Timezone: »

Learning Robust Hierarchical Patterns of Human Brain across Many fMRI Studies
Dushyant Sahoo · Christos Davatzikos

Tue Dec 07 08:30 AM -- 10:00 AM (PST) @

Multi-site fMRI studies face the challenge that the pooling introduces systematic non-biological site-specific variance due to hardware, software, and environment. In this paper, we propose to reduce site-specific variance in the estimation of hierarchical Sparsity Connectivity Patterns (hSCPs) in fMRI data via a simple yet effective matrix factorization while preserving biologically relevant variations. Our method leverages unsupervised adversarial learning to improve the reproducibility of the components. Experiments on simulated datasets display that the proposed method can estimate components with higher accuracy and reproducibility, while preserving age-related variation on a multi-center clinical data set.

Author Information

Dushyant Sahoo (University of Pennsylvania)
Christos Davatzikos (University of Pennsylvania)

More from the Same Authors

  • 2019 : Coffee Break + Poster Session I »
    Wei-Hung Weng · Simon Kohl · Aiham Taleb · Arijit Patra · Khashayar Namdar · Matthias Perkonigg · Shizhan Gong · Abdullah-Al-Zubaer Imran · Amir Abdi · Ilja Manakov · Johannes C. Paetzold · Ben Glocker · Dushyant Sahoo · Shreyas Fadnavis · Karsten Roth · Xueqing Liu · Yifan Zhang · Alexander Preuhs · Fabian Eitel · Anusua Trivedi · Tomer Weiss · Darko Stern · Liset Vazquez Romaguera · Johannes Hofmanninger · Aakash Kaku · Oloruntobiloba Olatunji · Anastasia Razdaibiedina · Tao Zhang