Timezone: »
Poster
Information-constrained optimization: can adaptive processing of gradients help?
Jayadev Acharya · Clement Canonne · Prathamesh Mayekar · Himanshu Tyagi
We revisit first-order optimization under local information constraints such as local privacy, gradient quantization, and computational constraints limiting access to a few coordinates of the gradient. In this setting, the optimization algorithm is not allowed to directly access the complete output of the gradient oracle, but only gets limited information about it subject to the local information constraints. We study the role of adaptivity in processing the gradient output to obtain this limited information from it, and obtain tight or nearly tight bounds for both convex and strongly convex optimization when adaptive gradient processing is allowed.
Author Information
Jayadev Acharya (Cornell University)
Clement Canonne (University of Sydney)
Prathamesh Mayekar (Indian Institute of Science)
Himanshu Tyagi
More from the Same Authors
-
2021 : Differential Privacy via Group Shuffling »
Amir Mohammad Abouei · Clement Canonne -
2022 : Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks »
Jimmy Di · Jack Douglas · Jayadev Acharya · Gautam Kamath · Ayush Sekhari -
2022 : Hidden Poison: Machine unlearning enables camouflaged poisoning attacks »
Jimmy Di · Jack Douglas · Jayadev Acharya · Gautam Kamath · Ayush Sekhari -
2021 : Differential Privacy via Group Shuffling »
Amir Mohammad Abouei · Clement Canonne -
2021 Poster: Distributed Estimation with Multiple Samples per User: Sharp Rates and Phase Transition »
Jayadev Acharya · Clement Canonne · Yuhan Liu · Ziteng Sun · Himanshu Tyagi -
2021 Poster: Remember What You Want to Forget: Algorithms for Machine Unlearning »
Ayush Sekhari · Jayadev Acharya · Gautam Kamath · Ananda Theertha Suresh -
2021 Poster: Optimal Rates for Nonparametric Density Estimation under Communication Constraints »
Jayadev Acharya · Clement Canonne · Aditya Vikram Singh · Himanshu Tyagi -
2019 : Poster Session »
Clement Canonne · Kwang-Sung Jun · Seth Neel · Di Wang · Giuseppe Vietri · Liwei Song · Jonathan Lebensold · Huanyu Zhang · Lovedeep Gondara · Ang Li · FatemehSadat Mireshghallah · Jinshuo Dong · Anand D Sarwate · Antti Koskela · Joonas Jälkö · Matt Kusner · Dingfan Chen · Mi Jung Park · Ashwin Machanavajjhala · Jayashree Kalpathy-Cramer · · Vitaly Feldman · Andrew Tomkins · Hai Phan · Hossein Esfandiari · Mimansa Jaiswal · Mrinank Sharma · Jeff Druce · Casey Meehan · Zhengli Zhao · Hsiang Hsu · Davis Railsback · Abraham Flaxman · · Julius Adebayo · Aleksandra Korolova · Jiaming Xu · Naoise Holohan · Samyadeep Basu · Matthew Joseph · My Thai · Xiaoqian Yang · Ellen Vitercik · Michael Hutchinson · Chenghong Wang · Gregory Yauney · Yuchao Tao · Chao Jin · Si Kai Lee · Audra McMillan · Rauf Izmailov · Jiayi Guo · Siddharth Swaroop · Tribhuvanesh Orekondy · Hadi Esmaeilzadeh · Kevin Procopio · Alkis Polyzotis · Jafar Mohammadi · Nitin Agrawal -
2019 Poster: Estimating Entropy of Distributions in Constant Space »
Jayadev Acharya · Sourbh Bhadane · Piotr Indyk · Ziteng Sun -
2018 Poster: Learning and Testing Causal Models with Interventions »
Jayadev Acharya · Arnab Bhattacharyya · Constantinos Daskalakis · Saravanan Kandasamy -
2018 Poster: Differentially Private Testing of Identity and Closeness of Discrete Distributions »
Jayadev Acharya · Ziteng Sun · Huanyu Zhang -
2018 Spotlight: Differentially Private Testing of Identity and Closeness of Discrete Distributions »
Jayadev Acharya · Ziteng Sun · Huanyu Zhang