Timezone: »
In human pedagogy, teachers and students can interact adaptively to maximize communication efficiency. The teacher adjusts her teaching method for different students, and the student, after getting familiar with the teacher’s instruction mechanism, can infer the teacher’s intention to learn faster. Recently, the benefits of integrating this cooperative pedagogy into machine concept learning in discrete spaces have been proved by multiple works. However, how cooperative pedagogy can facilitate machine parameter learning hasn’t been thoroughly studied. In this paper, we propose a gradient optimization based teacher-aware learner who can incorporate teacher’s cooperative intention into the likelihood function and learn provably faster compared with the naive learning algorithms used in previous machine teaching works. We give theoretical proof that the iterative teacher-aware learning (ITAL) process leads to local and global improvements. We then validate our algorithms with extensive experiments on various tasks including regression, classification, and inverse reinforcement learning using synthetic and real data. We also show the advantage of modeling teacher-awareness when agents are learning from human teachers.
Author Information
Luyao Yuan (University of California, Los Angeles)
Dongruo Zhou (UCLA)
Junhong Shen (University of California, Los Angeles)
Jingdong Gao (University of California, Los Angeles)
Jeffrey L Chen (UCLA)
Quanquan Gu (UCLA)
Ying Nian Wu (University of California, Los Angeles)
Song-Chun Zhu (UCLA)
More from the Same Authors
-
2020 : Paper 2: Energy-Based Continuous Inverse Optimal Control »
Yifei Xu · Jianwen Xie · Chris Baker · Yibiao Zhao · Ying Nian Wu -
2021 : IconQA: A New Benchmark for Abstract Diagram Understanding and Visual Language Reasoning »
Pan Lu · Liang Qiu · Jiaqi Chen · Tanglin Xia · Yizhou Zhao · Wei Zhang · Zhou Yu · Xiaodan Liang · Song-Chun Zhu -
2021 : Faster Perturbed Stochastic Gradient Methods for Finding Local Minima »
Zixiang Chen · Dongruo Zhou · Quanquan Gu -
2021 : Deep Generative model with Hierarchical Latent Factors for Timeseries Anomaly Detection »
Cristian Challu · Peihong Jiang · Ying Nian Wu · Laurent Callot -
2021 : Learning Two-Player Mixture Markov Games: Kernel Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2021 : Unsupervised Meta-Learning via Latent Space Energy-based Model of Symbol Vector Coupling »
Bo Pang · Deqian Kong · Ying Nian Wu -
2021 : Deep Generative model with Hierarchical Latent Factors for Timeseries Anomaly Detection »
Cristian Challu · Peihong Jiang · Ying Nian Wu · Laurent Callot -
2022 : Learn to Select Good Examples with Reinforcement Learning for Semi-structured Mathematical Reasoning »
Pan Lu · Liang Qiu · Kai-Wei Chang · Ying Nian Wu · Song-Chun Zhu · Tanmay Rajpurohit · Peter Clark · Ashwin Kalyan -
2022 : Conformal Isometry of Lie Group Representation in Recurrent Network of Grid Cells »
Dehong Xu · Ruiqi Gao · Wenhao Zhang · Xue-Xin Wei · Ying Nian Wu -
2022 : Neural-Symbolic Recursive Machine for Systematic Generalization »
Qing Li · Yixin Zhu · Yitao Liang · Ying Nian Wu · Song-Chun Zhu · Siyuan Huang -
2023 Poster: Learning Energy-Based Prior Model with Diffusion-Amortized MCMC »
Peiyu Yu · Yaxuan Zhu · Sirui Xie · Xiaojian (Shawn) Ma · Ruiqi Gao · Song-Chun Zhu · Ying Nian Wu -
2023 Poster: Robust Contrastive Language-Image Pretraining against Data Poisoning and Backdoor Attacks »
Wenhan Yang · Jingdong Gao · Baharan Mirzasoleiman -
2023 Poster: A Recurrent Neural Circuit Mechanism of Temporal-scaling Equivariant Representation »
Junfeng Zuo · Xiao Liu · Ying Nian Wu · Si Wu · Wenhao Zhang -
2023 Poster: Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models »
Pan Lu · Baolin Peng · Hao Cheng · Michel Galley · Kai-Wei Chang · Ying Nian Wu · Song-Chun Zhu · Jianfeng Gao -
2022 Panel: Panel 4A-4: Giving Feedback on… & Computationally Efficient Horizon-Free… »
Dongruo Zhou · Evan Liu -
2022 Poster: Computationally Efficient Horizon-Free Reinforcement Learning for Linear Mixture MDPs »
Dongruo Zhou · Quanquan Gu -
2022 Poster: Learning Two-Player Markov Games: Neural Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2022 Poster: Translation-equivariant Representation in Recurrent Networks with a Continuous Manifold of Attractors »
Wenhao Zhang · Ying Nian Wu · Si Wu -
2022 Poster: Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions »
Jiafan He · Dongruo Zhou · Tong Zhang · Quanquan Gu -
2021 : Solving Math Problems by Joint Parsing and Cognitive Reasoning »
Song-Chun Zhu -
2021 Poster: The Benefits of Implicit Regularization from SGD in Least Squares Problems »
Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Dean Foster · Sham Kakade -
2021 Poster: On Path Integration of Grid Cells: Group Representation and Isotropic Scaling »
Ruiqi Gao · Jianwen Xie · Xue-Xin Wei · Song-Chun Zhu · Ying Nian Wu -
2021 Poster: Robust Visual Reasoning via Language Guided Neural Module Networks »
Arjun Akula · Varun Jampani · Soravit Changpinyo · Song-Chun Zhu -
2021 Poster: Uniform-PAC Bounds for Reinforcement Learning with Linear Function Approximation »
Jiafan He · Dongruo Zhou · Quanquan Gu -
2021 Poster: Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent »
Spencer Frei · Quanquan Gu -
2021 Poster: Risk Bounds for Over-parameterized Maximum Margin Classification on Sub-Gaussian Mixtures »
Yuan Cao · Quanquan Gu · Mikhail Belkin -
2021 Poster: Nearly Minimax Optimal Reinforcement Learning for Discounted MDPs »
Jiafan He · Dongruo Zhou · Quanquan Gu -
2021 Poster: Reward-Free Model-Based Reinforcement Learning with Linear Function Approximation »
Weitong ZHANG · Dongruo Zhou · Quanquan Gu -
2021 Poster: Variance-Aware Off-Policy Evaluation with Linear Function Approximation »
Yifei Min · Tianhao Wang · Dongruo Zhou · Quanquan Gu -
2021 Poster: Unsupervised Foreground Extraction via Deep Region Competition »
Peiyu Yu · Sirui Xie · Xiaojian (Shawn) Ma · Yixin Zhu · Ying Nian Wu · Song-Chun Zhu -
2021 Poster: Provably Efficient Reinforcement Learning with Linear Function Approximation under Adaptivity Constraints »
Tianhao Wang · Dongruo Zhou · Quanquan Gu -
2021 Poster: Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks »
Hanxun Huang · Yisen Wang · Sarah Erfani · Quanquan Gu · James Bailey · Xingjun Ma -
2021 Poster: Do Wider Neural Networks Really Help Adversarial Robustness? »
Boxi Wu · Jinghui Chen · Deng Cai · Xiaofei He · Quanquan Gu -
2021 Poster: Pure Exploration in Kernel and Neural Bandits »
Yinglun Zhu · Dongruo Zhou · Ruoxi Jiang · Quanquan Gu · Rebecca Willett · Robert Nowak -
2020 : Contributed talks in Session 4 (Zoom) »
Quanquan Gu · sanae lotfi · Charles Guille-Escuret · Tolga Ergen · Dongruo Zhou -
2020 : Contributed Video: On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization, Dongruo Zhou »
Dongruo Zhou -
2020 : Poster Session 3 (gather.town) »
Denny Wu · Chengrun Yang · Tolga Ergen · sanae lotfi · Charles Guille-Escuret · Boris Ginsburg · Hanbake Lyu · Cong Xie · David Newton · Debraj Basu · Yewen Wang · James Lucas · MAOJIA LI · Lijun Ding · Jose Javier Gonzalez Ortiz · Reyhane Askari Hemmat · Zhiqi Bu · Neal Lawton · Kiran Thekumparampil · Jiaming Liang · Lindon Roberts · Jingyi Zhu · Dongruo Zhou -
2020 Poster: Learning Latent Space Energy-Based Prior Model »
Bo Pang · Tian Han · Erik Nijkamp · Song-Chun Zhu · Ying Nian Wu -
2019 : Extended Poster Session »
Travis LaCroix · Marie Ossenkopf · Mina Lee · Nicole Fitzgerald · Daniela Mihai · Jonathon Hare · Ali Zaidi · Alexander Cowen-Rivers · Alana Marzoev · Eugene Kharitonov · Luyao Yuan · Tomasz Korbak · Paul Pu Liang · Yi Ren · Roberto Dessì · Peter Potash · Shangmin Guo · Tatsunori Hashimoto · Percy Liang · Julian Zubek · Zipeng Fu · Song-Chun Zhu · Adam Lerer -
2019 Poster: Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model »
Erik Nijkamp · Mitch Hill · Song-Chun Zhu · Ying Nian Wu -
2018 Poster: Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima »
Yaodong Yu · Pan Xu · Quanquan Gu -
2018 Poster: Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization »
Pan Xu · Jinghui Chen · Difan Zou · Quanquan Gu -
2018 Spotlight: Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization »
Pan Xu · Jinghui Chen · Difan Zou · Quanquan Gu -
2018 Poster: Stochastic Nested Variance Reduced Gradient Descent for Nonconvex Optimization »
Dongruo Zhou · Pan Xu · Quanquan Gu -
2018 Spotlight: Stochastic Nested Variance Reduced Gradient Descent for Nonconvex Optimization »
Dongruo Zhou · Pan Xu · Quanquan Gu -
2018 Poster: Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation »
Siyuan Huang · Siyuan Qi · Yinxue Xiao · Yixin Zhu · Ying Nian Wu · Song-Chun Zhu -
2018 Poster: Distributed Learning without Distress: Privacy-Preserving Empirical Risk Minimization »
Bargav Jayaraman · Lingxiao Wang · David Evans · Quanquan Gu -
2017 Poster: Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Optimization »
Pan Xu · Jian Ma · Quanquan Gu -
2016 Poster: Semiparametric Differential Graph Models »
Pan Xu · Quanquan Gu -
2015 Poster: High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality »
Zhaoran Wang · Quanquan Gu · Yang Ning · Han Liu -
2014 Poster: Sparse PCA with Oracle Property »
Quanquan Gu · Zhaoran Wang · Han Liu -
2014 Poster: Robust Tensor Decomposition with Gross Corruption »
Quanquan Gu · Huan Gui · Jiawei Han -
2012 Poster: Selective Labeling via Error Bound Minimization »
Quanquan Gu · Tong Zhang · Chris Ding · Jiawei Han