Timezone: »
When faced with sequential decision-making problems, it is often useful to be able to predict what would happen if decisions were made using a new policy. Those predictions must often be based on data collected under some previously used decision-making rule. Many previous methods enable such off-policy (or counterfactual) estimation of the expected value of a performance measure called the return. In this paper, we take the first steps towards a 'universal off-policy estimator' (UnO)---one that provides off-policy estimates and high-confidence bounds for any parameter of the return distribution. We use UnO for estimating and simultaneously bounding the mean, variance, quantiles/median, inter-quantile range, CVaR, and the entire cumulative distribution of returns. Finally, we also discuss UnO's applicability in various settings, including fully observable, partially observable (i.e., with unobserved confounders), Markovian, non-Markovian, stationary, smoothly non-stationary, and discrete distribution shifts.
Author Information
Yash Chandak (University of Massachusetts Amherst)
Scott Niekum (UT Austin)
Bruno da Silva (Federal University of Rio Grande do Sul)
Erik Learned-Miller (UMass Amherst)
Emma Brunskill (Stanford University)
Philip Thomas (University of Massachusetts Amherst)
More from the Same Authors
-
2021 : Identification of Subgroups With Similar Benefits in Off-Policy Policy Evaluation »
Ramtin Keramati · Omer Gottesman · Leo Celi · Finale Doshi-Velez · Emma Brunskill -
2022 : Optimization using Parallel Gradient Evaluations on Multiple Parameters »
Yash Chandak · Shiv Shankar · Venkata Gandikota · Philip Thomas · Arya Mazumdar -
2022 : Language-guided Task Adaptation for Imitation Learning »
Prasoon Goyal · Raymond Mooney · Scott Niekum -
2022 : A Ranking Game for Imitation Learning »
Harshit Sushil Sikchi · Akanksha Saran · Wonjoon Goo · Scott Niekum -
2022 Workshop: Reinforcement Learning for Real Life (RL4RealLife) Workshop »
Yuxi Li · Emma Brunskill · MINMIN CHEN · Omer Gottesman · Lihong Li · Yao Liu · Zhiwei Tony Qin · Matthew Taylor -
2022 Workshop: All Things Attention: Bridging Different Perspectives on Attention »
Abhijat Biswas · Akanksha Saran · Khimya Khetarpal · Reuben Aronson · Ruohan Zhang · Grace Lindsay · Scott Niekum -
2022 Poster: Oracle Inequalities for Model Selection in Offline Reinforcement Learning »
Jonathan N Lee · George Tucker · Ofir Nachum · Bo Dai · Emma Brunskill -
2022 Poster: Factored DRO: Factored Distributionally Robust Policies for Contextual Bandits »
Tong Mu · Yash Chandak · Tatsunori Hashimoto · Emma Brunskill -
2022 Poster: Off-Policy Evaluation for Action-Dependent Non-stationary Environments »
Yash Chandak · Shiv Shankar · Nathaniel Bastian · Bruno da Silva · Emma Brunskill · Philip Thomas -
2022 Poster: Data-Efficient Pipeline for Offline Reinforcement Learning with Limited Data »
Allen Nie · Yannis Flet-Berliac · Deon Jordan · William Steenbergen · Emma Brunskill -
2022 Poster: Giving Feedback on Interactive Student Programs with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2021 : Q&A for Philip Thomas »
Philip Thomas -
2021 : Advances in (High-Confidence) Off-Policy Evaluation »
Philip Thomas -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 : Invited Speaker Panel »
Sham Kakade · Minmin Chen · Philip Thomas · Angela Schoellig · Barbara Engelhardt · Doina Precup · George Tucker -
2021 : Safe RL Debate »
Sylvia Herbert · Animesh Garg · Emma Brunskill · Aleksandra Faust · Dylan Hadfield-Menell -
2021 Poster: Play to Grade: Testing Coding Games as Classifying Markov Decision Process »
Allen Nie · Emma Brunskill · Chris Piech -
2021 Poster: Adversarial Intrinsic Motivation for Reinforcement Learning »
Ishan Durugkar · Mauricio Tec · Scott Niekum · Peter Stone -
2021 Poster: Reinforcement Learning with State Observation Costs in Action-Contingent Noiselessly Observable Markov Decision Processes »
HyunJi Alex Nam · Scott Fleming · Emma Brunskill -
2021 Poster: SOPE: Spectrum of Off-Policy Estimators »
Christina Yuan · Yash Chandak · Stephen Giguere · Philip Thomas · Scott Niekum -
2021 Poster: Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety Constraints in Finite MDPs »
harsh satija · Philip Thomas · Joelle Pineau · Romain Laroche -
2021 Poster: Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning »
Andrea Zanette · Martin J Wainwright · Emma Brunskill -
2021 Poster: Structural Credit Assignment in Neural Networks using Reinforcement Learning »
Dhawal Gupta · Gabor Mihucz · Matthew Schlegel · James Kostas · Philip Thomas · Martha White -
2021 Poster: Design of Experiments for Stochastic Contextual Linear Bandits »
Andrea Zanette · Kefan Dong · Jonathan N Lee · Emma Brunskill -
2020 : Counterfactuals and Offline RL »
Emma Brunskill -
2020 : Q & A and Panel Session with Dan Weld, Kristen Grauman, Scott Yih, Emma Brunskill, and Alex Ratner »
Kristen Grauman · Wen-tau Yih · Alexander Ratner · Emma Brunskill · Douwe Kiela · Daniel S. Weld -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Mini-panel discussion 1 - Bridging the gap between theory and practice »
Aviv Tamar · Emma Brunskill · Jost Tobias Springenberg · Omer Gottesman · Daniel Mankowitz -
2020 : Keynote: Emma Brunskill »
Emma Brunskill -
2020 : Panel discussion on minimizing bias in machine learning in education »
Neil Heffernan · Osonde A. Osoba · Emma Brunskill · Kathi Fisler -
2020 Poster: Towards Safe Policy Improvement for Non-Stationary MDPs »
Yash Chandak · Scott Jordan · Georgios Theocharous · Martha White · Philip Thomas -
2020 Spotlight: Towards Safe Policy Improvement for Non-Stationary MDPs »
Yash Chandak · Scott Jordan · Georgios Theocharous · Martha White · Philip Thomas -
2020 Poster: Off-policy Policy Evaluation For Sequential Decisions Under Unobserved Confounding »
Hongseok Namkoong · Ramtin Keramati · Steve Yadlowsky · Emma Brunskill -
2020 Poster: Security Analysis of Safe and Seldonian Reinforcement Learning Algorithms »
Pinar Ozisik · Philip Thomas -
2020 Poster: Bayesian Robust Optimization for Imitation Learning »
Daniel S. Brown · Scott Niekum · Marek Petrik -
2020 Poster: Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration »
Andrea Zanette · Alessandro Lazaric · Mykel J Kochenderfer · Emma Brunskill -
2020 Poster: Provably Good Batch Reinforcement Learning Without Great Exploration »
Yao Liu · Adith Swaminathan · Alekh Agarwal · Emma Brunskill -
2019 : Emma Brünskill, "Some Theory RL Challenges Inspired by Education" »
Emma Brunskill -
2019 : Invited Talk »
Emma Brunskill -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Scott Niekum: Scaling Probabilistically Safe Learning to Robotics »
Scott Niekum -
2019 Poster: Offline Contextual Bandits with High Probability Fairness Guarantees »
Blossom Metevier · Stephen Giguere · Sarah Brockman · Ari Kobren · Yuriy Brun · Emma Brunskill · Philip Thomas -
2019 Poster: Almost Horizon-Free Structure-Aware Best Policy Identification with a Generative Model »
Andrea Zanette · Mykel J Kochenderfer · Emma Brunskill -
2019 Poster: Limiting Extrapolation in Linear Approximate Value Iteration »
Andrea Zanette · Alessandro Lazaric · Mykel J Kochenderfer · Emma Brunskill -
2019 Poster: A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning »
Francisco Garcia · Philip Thomas -
2018 : Lunch & Posters »
Haytham Fayek · German Parisi · Brian Xu · Pramod Kaushik Mudrakarta · Sophie Cerf · Sarah Wassermann · Davit Soselia · Rahaf Aljundi · Mohamed Elhoseiny · Frantzeska Lavda · Kevin J Liang · Arslan Chaudhry · Sanmit Narvekar · Vincenzo Lomonaco · Wesley Chung · Michael Chang · Ying Zhao · Zsolt Kira · Pouya Bashivan · Banafsheh Rafiee · Oleksiy Ostapenko · Andrew Jones · Christos Kaplanis · Sinan Kalkan · Dan Teng · Xu He · Vincent Liu · Somjit Nath · Sungsoo Ahn · Ting Chen · Shenyang Huang · Yash Chandak · Nathan Sprague · Martin Schrimpf · Tony Kendall · Jonathan Richard Schwarz · Michael Li · Yunshu Du · Yen-Chang Hsu · Samira Abnar · Bo Wang -
2018 Poster: Representation Balancing MDPs for Off-policy Policy Evaluation »
Yao Liu · Omer Gottesman · Aniruddh Raghu · Matthieu Komorowski · Aldo Faisal · Finale Doshi-Velez · Emma Brunskill -
2018 Demonstration: Automatic Curriculum Generation Applied to Teaching Novices a Short Bach Piano Segment »
Emma Brunskill · Tong Mu · Karan Goel · Jonathan Bragg -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Sample efficiency and off policy hierarchical RL (Emma Brunskill) »
Emma Brunskill -
2017 : Emma Brunskill (Stanford) »
Emma Brunskill -
2017 : Invited Talk »
Emma Brunskill -
2017 Poster: Using Options and Covariance Testing for Long Horizon Off-Policy Policy Evaluation »
Zhaohan Guo · Philip S. Thomas · Emma Brunskill -
2017 Poster: Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning »
Christoph Dann · Tor Lattimore · Emma Brunskill -
2017 Spotlight: Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning »
Christoph Dann · Tor Lattimore · Emma Brunskill -
2017 Poster: Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples »
Haw-Shiuan Chang · Erik Learned-Miller · Andrew McCallum -
2017 Tutorial: Reinforcement Learning with People »
Emma Brunskill -
2015 Poster: Policy Evaluation Using the Ω-Return »
Philip Thomas · Scott Niekum · Georgios Theocharous · George Konidaris -
2013 Poster: Projected Natural Actor-Critic »
Philip Thomas · William C Dabney · Stephen Giguere · Sridhar Mahadevan -
2012 Poster: Learning to Align from Scratch »
Gary B Huang · Marwan A Mattar · Honglak Lee · Erik Learned-Miller -
2011 Poster: TD_gamma: Re-evaluating Complex Backups in Temporal Difference Learning »
George Konidaris · Scott Niekum · Philip Thomas -
2011 Poster: Policy Gradient Coagent Networks »
Philip Thomas