Timezone: »
We study the problem of performing a sequence of optimal interventions in a dynamic causal system where both the target variable of interest, and the inputs, evolve over time. This problem arises in a variety of domains including healthcare, operational research and policy design. Our approach, which we call Dynamic Causal Bayesian Optimisation (DCBO), brings together ideas from decision making, causal inference and Gaussian process (GP) emulation. DCBO is useful in scenarios where the causal effects are changing over time. Indeed, at every time step, DCBO identifies a local optimal intervention by integrating both observational and past interventional data collected from the system. We give theoretical results detailing how one can transfer interventional information across time steps and define a dynamic causal GP model which can be used to find optimal interventions in practice. Finally, we demonstrate how DCBO identifies optimal interventions faster than competing approaches in multiple settings and applications.
Author Information
Virginia Aglietti (University of Warwick)
Neil Dhir (The Alan Turing Institute)
Javier González (Microsoft Research Cambridge)
Theodoros Damoulas (University of Warwick)
More from the Same Authors
-
2021 : Chronological Causal Bandit »
Neil Dhir -
2021 : Invariant Priors for Bayesian Quadrature »
Masha Naslidnyk · Javier González · Maren Mahsereci -
2021 : Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap »
Harita Dellaporta · Jeremias Knoblauch · Theodoros Damoulas · Francois-Xavier Briol -
2022 Poster: RKHS-SHAP: Shapley Values for Kernel Methods »
Siu Lun Chau · Robert Hu · Javier González · Dino Sejdinovic -
2021 : Panel »
Mohammad Emtiyaz Khan · Atoosa Kasirzadeh · Anna Rogers · Javier González · Suresh Venkatasubramanian · Robert Williamson -
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2021 Poster: Higher Order Kernel Mean Embeddings to Capture Filtrations of Stochastic Processes »
Cristopher Salvi · Maud Lemercier · Chong Liu · Blanka Horvath · Theodoros Damoulas · Terry Lyons -
2021 Poster: Spatio-Temporal Variational Gaussian Processes »
Oliver Hamelijnck · William Wilkinson · Niki Loppi · Arno Solin · Theodoros Damoulas -
2020 Poster: BOSS: Bayesian Optimization over String Spaces »
Henry Moss · David Leslie · Daniel Beck · Javier González · Paul Rayson -
2020 Poster: Multi-task Causal Learning with Gaussian Processes »
Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González -
2020 Spotlight: BOSS: Bayesian Optimization over String Spaces »
Henry Moss · David Leslie · Daniel Beck · Javier González · Paul Rayson -
2019 Poster: Structured Variational Inference in Continuous Cox Process Models »
Virginia Aglietti · Edwin Bonilla · Theodoros Damoulas · Sally Cripps -
2019 Poster: Meta-Surrogate Benchmarking for Hyperparameter Optimization »
Aaron Klein · Zhenwen Dai · Frank Hutter · Neil Lawrence · Javier González