Timezone: »
Our main contribution in this work is an empirical finding that random General Value Functions (GVFs), i.e., deep action-conditional predictions---random both in what feature of observations they predict as well as in the sequence of actions the predictions are conditioned upon---form good auxiliary tasks for reinforcement learning (RL) problems. In particular, we show that random deep action-conditional predictions when used as auxiliary tasks yield state representations that produce control performance competitive with state-of-the-art hand-crafted auxiliary tasks like value prediction, pixel control, and CURL in both Atari and DeepMind Lab tasks. In another set of experiments we stop the gradients from the RL part of the network to the state representation learning part of the network and show, perhaps surprisingly, that the auxiliary tasks alone are sufficient to learn state representations good enough to outperform an end-to-end trained actor-critic baseline. We opensourced our code at https://github.com/Hwhitetooth/random_gvfs.
Author Information
Zeyu Zheng (University of Michigan)
Vivek Veeriah (University of Michigan)
Risto Vuorio (University of Oxford)
I'm a PhD student in WhiRL at University of Oxford. I'm interested in reinforcement learning and meta-learning.
Richard L Lewis (University of Michigan)
Satinder Singh (DeepMind)
More from the Same Authors
-
2021 Spotlight: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Spotlight: Reward is enough for convex MDPs »
Tom Zahavy · Brendan O'Donoghue · Guillaume Desjardins · Satinder Singh -
2021 : GrASP: Gradient-Based Affordance Selection for Planning »
Vivek Veeriah · Zeyu Zheng · Richard L Lewis · Satinder Singh -
2021 : No DICE: An Investigation of the Bias-Variance Tradeoff in Meta-Gradients »
Risto Vuorio · Jacob Beck · Greg Farquhar · Jakob Foerster · Shimon Whiteson -
2021 : On the Practical Consistency of Meta-Reinforcement Learning Algorithms »
Zheng Xiong · Luisa Zintgraf · Jacob Beck · Risto Vuorio · Shimon Whiteson -
2022 : In-Context Policy Iteration »
Ethan Brooks · Logan Walls · Richard L Lewis · Satinder Singh -
2022 : In-context Reinforcement Learning with Algorithm Distillation »
Michael Laskin · Luyu Wang · Junhyuk Oh · Emilio Parisotto · Stephen Spencer · Richie Steigerwald · DJ Strouse · Steven Hansen · Angelos Filos · Ethan Brooks · Maxime Gazeau · Himanshu Sahni · Satinder Singh · Volodymyr Mnih -
2022 : Optimistic Meta-Gradients »
Sebastian Flennerhag · Tom Zahavy · Brendan O'Donoghue · Hado van Hasselt · András György · Satinder Singh -
2022 : Deconfounded Imitation Learning »
Risto Vuorio · Pim de Haan · Johann Brehmer · Hanno Ackermann · Daniel Dijkman · Taco Cohen -
2022 : In-context Reinforcement Learning with Algorithm Distillation »
Michael Laskin · Luyu Wang · Junhyuk Oh · Emilio Parisotto · Stephen Spencer · Richie Steigerwald · DJ Strouse · Steven Hansen · Angelos Filos · Ethan Brooks · Maxime Gazeau · Himanshu Sahni · Satinder Singh · Volodymyr Mnih -
2022 Workshop: Deep Reinforcement Learning Workshop »
Karol Hausman · Qi Zhang · Matthew Taylor · Martha White · Suraj Nair · Manan Tomar · Risto Vuorio · Ted Xiao · Zeyu Zheng · Manan Tomar -
2022 Poster: Palm up: Playing in the Latent Manifold for Unsupervised Pretraining »
Hao Liu · Tom Zahavy · Volodymyr Mnih · Satinder Singh -
2022 Poster: Approximate Value Equivalence »
Christopher Grimm · Andre Barreto · Satinder Singh -
2022 Poster: Planning to the Information Horizon of BAMDPs via Epistemic State Abstraction »
Dilip Arumugam · Satinder Singh -
2021 : Reducing the Information Horizon of Bayes-Adaptive Markov Decision Processes via Epistemic State Abstraction »
Dilip Arumugam · Satinder Singh -
2021 : Bootstrapped Meta-Learning »
Sebastian Flennerhag · Yannick Schroecker · Tom Zahavy · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: On the Expressivity of Markov Reward »
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh -
2021 Poster: Reward is enough for convex MDPs »
Tom Zahavy · Brendan O'Donoghue · Guillaume Desjardins · Satinder Singh -
2021 Poster: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Poster: Discovery of Options via Meta-Learned Subgoals »
Vivek Veeriah · Tom Zahavy · Matteo Hessel · Zhongwen Xu · Junhyuk Oh · Iurii Kemaev · Hado van Hasselt · David Silver · Satinder Singh -
2021 Oral: On the Expressivity of Markov Reward »
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh -
2020 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Coline Devin · Misha Laskin · Kimin Lee · Janarthanan Rajendran · Vivek Veeriah -
2020 Poster: Discovering Reinforcement Learning Algorithms »
Junhyuk Oh · Matteo Hessel · Wojciech Czarnecki · Zhongwen Xu · Hado van Hasselt · Satinder Singh · David Silver -
2020 Poster: Meta-Gradient Reinforcement Learning with an Objective Discovered Online »
Zhongwen Xu · Hado van Hasselt · Matteo Hessel · Junhyuk Oh · Satinder Singh · David Silver -
2020 Poster: Learning to Play No-Press Diplomacy with Best Response Policy Iteration »
Thomas Anthony · Tom Eccles · Andrea Tacchetti · János Kramár · Ian Gemp · Thomas Hudson · Nicolas Porcel · Marc Lanctot · Julien Perolat · Richard Everett · Satinder Singh · Thore Graepel · Yoram Bachrach -
2020 Spotlight: Learning to Play No-Press Diplomacy with Best Response Policy Iteration »
Thomas Anthony · Tom Eccles · Andrea Tacchetti · János Kramár · Ian Gemp · Thomas Hudson · Nicolas Porcel · Marc Lanctot · Julien Perolat · Richard Everett · Satinder Singh · Thore Graepel · Yoram Bachrach -
2020 Poster: Learning Retrospective Knowledge with Reverse Reinforcement Learning »
Shangtong Zhang · Vivek Veeriah · Shimon Whiteson -
2020 Poster: A Self-Tuning Actor-Critic Algorithm »
Tom Zahavy · Zhongwen Xu · Vivek Veeriah · Matteo Hessel · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2020 Poster: On Efficiency in Hierarchical Reinforcement Learning »
Zheng Wen · Doina Precup · Morteza Ibrahimi · Andre Barreto · Benjamin Van Roy · Satinder Singh -
2020 Poster: The Value Equivalence Principle for Model-Based Reinforcement Learning »
Christopher Grimm · Andre Barreto · Satinder Singh · David Silver -
2020 Spotlight: On Efficiency in Hierarchical Reinforcement Learning »
Zheng Wen · Doina Precup · Morteza Ibrahimi · Andre Barreto · Benjamin Van Roy · Satinder Singh -
2019 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Joshua Achiam · Carlos Florensa · Christopher Grimm · Haoran Tang · Vivek Veeriah -
2019 Poster: Discovery of Useful Questions as Auxiliary Tasks »
Vivek Veeriah · Matteo Hessel · Zhongwen Xu · Janarthanan Rajendran · Richard L Lewis · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2019 Poster: Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation »
Risto Vuorio · Shao-Hua Sun · Hexiang Hu · Joseph Lim -
2019 Spotlight: Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation »
Risto Vuorio · Shao-Hua Sun · Hexiang Hu · Joseph Lim -
2019 Poster: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Spotlight: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2018 : Toward Multimodal Model-Agnostic Meta-Learning »
Risto Vuorio -
2018 Poster: On Learning Intrinsic Rewards for Policy Gradient Methods »
Zeyu Zheng · Junhyuk Oh · Satinder Singh -
2015 Poster: Action-Conditional Video Prediction using Deep Networks in Atari Games »
Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh -
2015 Spotlight: Action-Conditional Video Prediction using Deep Networks in Atari Games »
Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh -
2014 Poster: Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning »
Xiaoxiao Guo · Satinder Singh · Honglak Lee · Richard L Lewis · Xiaoshi Wang -
2013 Poster: Reward Mapping for Transfer in Long-Lived Agents »
Xiaoxiao Guo · Satinder Singh · Richard L Lewis -
2010 Poster: Reward Design via Online Gradient Ascent »
Jonathan D Sorg · Satinder Singh · Richard L Lewis