Timezone: »
The representations learned by large-scale NLP models such as BERT have been widely used in various tasks. However, the increasing model size of the pre-trained models also brings efficiency challenges, including inference speed and model size when deploying models on mobile devices. Specifically, most operations in BERT consist of matrix multiplications. These matrices are not low-rank and thus canonical matrix decomposition could not find an efficient approximation. In this paper, we observe that the learned representation of each layer lies in a low-dimensional space. Based on this observation, we propose DRONE (data-aware low-rank compression), a provably optimal low-rank decomposition of weight matrices, which has a simple closed form solution that can be efficiently computed. DRONE can be applied to both fully connected and self-attention layers appearing in the BERT model. In addition to compressing standard models, out method can also be used on distilled BERT models to further improve compression rate. Experimental results show that DRONE is able to improve both model size and inference speed with limited loss in accuracy. Specifically, DRONE alone achieves 1.92x speedup on the MRPC task with only 1.5% loss in accuracy, and when DRONE is combined with distillation, it further achieves over 12.3x speedup on various natural language inference tasks.
Author Information
Patrick Chen (UCLA)
Hsiang-Fu Yu (Amazon)
Inderjit Dhillon (UT Austin & Amazon)
Cho-Jui Hsieh (UCLA)
More from the Same Authors
-
2022 : Differentially Private Federated Learning with Normalized Updates »
Rudrajit Das · Abolfazl Hashemi · Sujay Sanghavi · Inderjit Dhillon -
2022 : FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning »
Yuanhao Xiong · Ruochen Wang · Minhao Cheng · Felix Yu · Cho-Jui Hsieh -
2022 : On the Adversarial Robustness of Vision Transformers »
Rulin Shao · Zhouxing Shi · Jinfeng Yi · Pin-Yu Chen · Cho-Jui Hsieh -
2022 : Evaluating Worst Case Adversarial Weather Perturbations Robustness »
Yihan Wang · Yunhao Ba · Howard Zhang · Huan Zhang · Achuta Kadambi · Stefano Soatto · Alex Wong · Cho-Jui Hsieh -
2023 Poster: Universality and Limitations of Prompt Tuning »
Yihan Wang · Jatin Chauhan · Wei Wang · Cho-Jui Hsieh -
2023 Poster: Symbolic Discovery of Optimization Algorithms »
Xiangning Chen · Chen Liang · Da Huang · Esteban Real · Kaiyuan Wang · Hieu Pham · Xuanyi Dong · Thang Luong · Cho-Jui Hsieh · Yifeng Lu · Quoc V Le -
2023 Poster: Effective Robustness against Natural Distribution Shifts for Models with Different Training Data »
Zhouxing Shi · Nicholas Carlini · Ananth Balashankar · Ludwig Schmidt · Cho-Jui Hsieh · Alex Beutel · Yao Qin -
2023 Poster: Block Low-Rank Preconditioner with Shared Basis for Stochastic Optimization »
Jui-Nan Yen · Sai Surya Duvvuri · Inderjit Dhillon · Cho-Jui Hsieh -
2023 Poster: A Computationally Efficient Sparsified Online Newton Method »
Fnu Devvrit · Sai Surya Duvvuri · Rohan Anil · Vineet Gupta · Cho-Jui Hsieh · Inderjit Dhillon -
2023 Poster: Robust Lipschitz Bandits to Adversarial Corruptions »
Yue Kang · Cho-Jui Hsieh · Thomas Chun Man Lee -
2023 Poster: Why Does Sharpness-Aware Minimization Generalize Better Than SGD? »
Zixiang Chen · Junkai Zhang · Yiwen Kou · Xiangning Chen · Cho-Jui Hsieh · Quanquan Gu -
2022 Poster: Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems »
Yue Kang · Cho-Jui Hsieh · Thomas Chun Man Lee -
2022 Poster: Syndicated Bandits: A Framework for Auto Tuning Hyper-parameters in Contextual Bandit Algorithms »
QIN DING · Yue Kang · Yi-Wei Liu · Thomas Chun Man Lee · Cho-Jui Hsieh · James Sharpnack -
2022 Poster: S3GC: Scalable Self-Supervised Graph Clustering »
Fnu Devvrit · Aditya Sinha · Inderjit Dhillon · Prateek Jain -
2022 Poster: ELIAS: End-to-End Learning to Index and Search in Large Output Spaces »
Nilesh Gupta · Patrick Chen · Hsiang-Fu Yu · Cho-Jui Hsieh · Inderjit Dhillon -
2022 Poster: DC-BENCH: Dataset Condensation Benchmark »
Justin CUI · Ruochen Wang · Si Si · Cho-Jui Hsieh -
2022 Poster: Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation »
Zhouxing Shi · Yihan Wang · Huan Zhang · J. Zico Kolter · Cho-Jui Hsieh -
2022 Poster: Efficient Non-Parametric Optimizer Search for Diverse Tasks »
Ruochen Wang · Yuanhao Xiong · Minhao Cheng · Cho-Jui Hsieh -
2022 Poster: Are AlphaZero-like Agents Robust to Adversarial Perturbations? »
Li-Cheng Lan · Huan Zhang · Ti-Rong Wu · Meng-Yu Tsai · I-Chen Wu · Cho-Jui Hsieh -
2022 Poster: Random Sharpness-Aware Minimization »
Yong Liu · Siqi Mai · Minhao Cheng · Xiangning Chen · Cho-Jui Hsieh · Yang You -
2022 Poster: General Cutting Planes for Bound-Propagation-Based Neural Network Verification »
Huan Zhang · Shiqi Wang · Kaidi Xu · Linyi Li · Bo Li · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter -
2021 Poster: Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification »
Shiqi Wang · Huan Zhang · Kaidi Xu · Xue Lin · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter -
2021 Poster: Learnable Fourier Features for Multi-dimensional Spatial Positional Encoding »
Yang Li · Si Si · Gang Li · Cho-Jui Hsieh · Samy Bengio -
2021 Poster: Fast Multi-Resolution Transformer Fine-tuning for Extreme Multi-label Text Classification »
Jiong Zhang · Wei-Cheng Chang · Hsiang-Fu Yu · Inderjit Dhillon -
2021 Poster: Label Disentanglement in Partition-based Extreme Multilabel Classification »
Xuanqing Liu · Wei-Cheng Chang · Hsiang-Fu Yu · Cho-Jui Hsieh · Inderjit Dhillon -
2021 Poster: DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification »
Yongming Rao · Wenliang Zhao · Benlin Liu · Jiwen Lu · Jie Zhou · Cho-Jui Hsieh -
2021 Poster: Fast Certified Robust Training with Short Warmup »
Zhouxing Shi · Yihan Wang · Huan Zhang · Jinfeng Yi · Cho-Jui Hsieh -
2020 Poster: Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond »
Kaidi Xu · Zhouxing Shi · Huan Zhang · Yihan Wang · Kai-Wei Chang · Minlie Huang · Bhavya Kailkhura · Xue Lin · Cho-Jui Hsieh -
2020 Poster: Provably Robust Metric Learning »
Lu Wang · Xuanqing Liu · Jinfeng Yi · Yuan Jiang · Cho-Jui Hsieh -
2020 Poster: Elastic-InfoGAN: Unsupervised Disentangled Representation Learning in Class-Imbalanced Data »
Utkarsh Ojha · Krishna Kumar Singh · Cho-Jui Hsieh · Yong Jae Lee -
2020 Poster: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Spotlight: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Poster: An Efficient Adversarial Attack for Tree Ensembles »
Chong Zhang · Huan Zhang · Cho-Jui Hsieh -
2020 Poster: Multi-Stage Influence Function »
Hongge Chen · Si Si · Yang Li · Ciprian Chelba · Sanjiv Kumar · Duane Boning · Cho-Jui Hsieh -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 Poster: Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers »
Liwei Wu · Shuqing Li · Cho-Jui Hsieh · James Sharpnack -
2019 Poster: A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks »
Hadi Salman · Greg Yang · Huan Zhang · Cho-Jui Hsieh · Pengchuan Zhang -
2019 Poster: Provable Non-linear Inductive Matrix Completion »
Kai Zhong · Zhao Song · Prateek Jain · Inderjit Dhillon -
2019 Poster: Inverting Deep Generative models, One layer at a time »
Qi Lei · Ajil Jalal · Inderjit Dhillon · Alex Dimakis -
2019 Poster: Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting »
Rajat Sen · Hsiang-Fu Yu · Inderjit Dhillon -
2019 Poster: AutoAssist: A Framework to Accelerate Training of Deep Neural Networks »
Jiong Zhang · Hsiang-Fu Yu · Inderjit Dhillon -
2019 Poster: Robustness Verification of Tree-based Models »
Hongge Chen · Huan Zhang · Si Si · Yang Li · Duane Boning · Cho-Jui Hsieh -
2019 Poster: Convergence of Adversarial Training in Overparametrized Neural Networks »
Ruiqi Gao · Tianle Cai · Haochuan Li · Cho-Jui Hsieh · Liwei Wang · Jason Lee -
2019 Spotlight: Convergence of Adversarial Training in Overparametrized Neural Networks »
Ruiqi Gao · Tianle Cai · Haochuan Li · Cho-Jui Hsieh · Liwei Wang · Jason Lee -
2019 Poster: Primal-Dual Block Generalized Frank-Wolfe »
Qi Lei · JIACHENG ZHUO · Constantine Caramanis · Inderjit Dhillon · Alex Dimakis -
2019 Poster: A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning »
Xuanqing Liu · Si Si · Jerry Zhu · Yang Li · Cho-Jui Hsieh -
2017 Poster: A Greedy Approach for Budgeted Maximum Inner Product Search »
Hsiang-Fu Yu · Cho-Jui Hsieh · Qi Lei · Inderjit Dhillon -
2016 Workshop: Learning in High Dimensions with Structure »
Nikhil Rao · Prateek Jain · Hsiang-Fu Yu · Ming Yuan · Francis Bach -
2016 Poster: Asynchronous Parallel Greedy Coordinate Descent »
Yang You · Xiangru Lian · Ji Liu · Hsiang-Fu Yu · Inderjit Dhillon · James Demmel · Cho-Jui Hsieh -
2016 Poster: Coordinate-wise Power Method »
Qi Lei · Kai Zhong · Inderjit Dhillon -
2016 Poster: Structured Sparse Regression via Greedy Hard Thresholding »
Prateek Jain · Nikhil Rao · Inderjit Dhillon -
2016 Poster: Mixed Linear Regression with Multiple Components »
Kai Zhong · Prateek Jain · Inderjit Dhillon -
2016 Poster: Temporal Regularized Matrix Factorization for High-dimensional Time Series Prediction »
Hsiang-Fu Yu · Nikhil Rao · Inderjit Dhillon -
2016 Poster: Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain »
Ian En-Hsu Yen · Xiangru Huang · Kai Zhong · Ruohan Zhang · Pradeep Ravikumar · Inderjit Dhillon -
2015 Workshop: Multiresolution methods for large-scale learning »
Inderjit Dhillon · Risi Kondor · Rob Nowak · Michael O'Neil · Nedelina Teneva -
2015 : Temporal Regularized Matrix Factorization »
Hsiang-Fu Yu -
2015 Poster: Matrix Completion with Noisy Side Information »
Kai-Yang Chiang · Cho-Jui Hsieh · Inderjit Dhillon -
2015 Poster: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Spotlight: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Spotlight: Matrix Completion with Noisy Side Information »
Kai-Yang Chiang · Cho-Jui Hsieh · Inderjit Dhillon -
2015 Poster: Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent »
Ian En-Hsu Yen · Kai Zhong · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Consistent Multilabel Classification »
Oluwasanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Stephen Becker · Peder A Olsen -
2014 Poster: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Fast Prediction for Large-Scale Kernel Machines »
Cho-Jui Hsieh · Si Si · Inderjit Dhillon -
2014 Poster: Multi-Scale Spectral Decomposition of Massive Graphs »
Si Si · Donghyuk Shin · Inderjit Dhillon · Beresford N Parlett -
2014 Poster: Sparse Random Feature Algorithm as Coordinate Descent in Hilbert Space »
Ian En-Hsu Yen · Ting-Wei Lin · Shou-De Lin · Pradeep Ravikumar · Inderjit Dhillon -
2014 Spotlight: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators »
Kai Zhong · Ian En-Hsu Yen · Inderjit Dhillon · Pradeep Ravikumar -
2014 Poster: Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings »
Ian En-Hsu Yen · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2013 Poster: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Oral: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Poster: Large Scale Distributed Sparse Precision Estimation »
Huahua Wang · Arindam Banerjee · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2013 Poster: Learning with Noisy Labels »
Nagarajan Natarajan · Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2012 Poster: A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Arindam Banerjee -
2011 Poster: Greedy Algorithms for Structurally Constrained High Dimensional Problems »
Ambuj Tewari · Pradeep Ravikumar · Inderjit Dhillon -
2011 Poster: Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar -
2011 Poster: Nearest Neighbor based Greedy Coordinate Descent »
Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2011 Poster: Orthogonal Matching Pursuit with Replacement »
Prateek Jain · Ambuj Tewari · Inderjit Dhillon -
2010 Spotlight: Guaranteed Rank Minimization via Singular Value Projection »
Prateek Jain · Raghu Meka · Inderjit Dhillon -
2010 Poster: Guaranteed Rank Minimization via Singular Value Projection »
Prateek Jain · Raghu Meka · Inderjit Dhillon -
2010 Spotlight: Inductive Regularized Learning of Kernel Functions »
Prateek Jain · Brian Kulis · Inderjit Dhillon -
2010 Poster: Inductive Regularized Learning of Kernel Functions »
Prateek Jain · Brian Kulis · Inderjit Dhillon -
2009 Poster: Matrix Completion from Power-Law Distributed Samples »
Raghu Meka · Prateek Jain · Inderjit Dhillon -
2008 Poster: Online Metric Learning and Fast Similarity Search »
Prateek Jain · Brian Kulis · Inderjit Dhillon · Kristen Grauman -
2008 Oral: Online Metric Learning and Fast Similarity Search »
Prateek Jain · Brian Kulis · Inderjit Dhillon · Kristen Grauman -
2006 Poster: Differential Entropic Clustering of Multivariate Gaussians »
Jason V Davis · Inderjit Dhillon