Timezone: »
In this paper, we provide theoretical results of estimation bounds and excess risk upper bounds for support vector machine (SVM) with sparse multi-kernel representation. These convergence rates for multi-kernel SVM are established by analyzing a Lasso-type regularized learning scheme within composite multi-kernel spaces. It is shown that the oracle rates of convergence of classifiers depend on the complexity of multi-kernels, the sparsity, a Bernstein condition and the sample size, which significantly improves on previous results even for the additive or linear cases. In summary, this paper not only provides unified theoretical results for multi-kernel SVMs, but also enriches the literature on high-dimensional nonparametric classification.
Author Information
shaogao lv (Nanjing Audit University)
Junhui Wang (City University of Hong Kong)
Jiankun Liu (Institute of Information Engineering, CAS)
Yong Liu (Renmin University of China)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Improved Learning Rates of a Functional Lasso-type SVM with Sparse Multi-Kernel Representation »
Thu. Dec 9th 12:30 -- 02:00 AM Room
More from the Same Authors
-
2021 Spotlight: Refined Learning Bounds for Kernel and Approximate $k$-Means »
Yong Liu -
2022 Poster: Fine-Grained Analysis of Stability and Generalization for Modern Meta Learning Algorithms »
Jiechao Guan · Yong Liu · Zhiwu Lu -
2022 Spotlight: Fine-Grained Analysis of Stability and Generalization for Modern Meta Learning Algorithms »
Jiechao Guan · Yong Liu · Zhiwu Lu -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Spotlight: Stability and Generalization of Kernel Clustering: from Single Kernel to Multiple Kernel »
Weixuan Liang · Xinwang Liu · Yong Liu · sihang zhou · Jun-Jie Huang · Siwei Wang · Jiyuan Liu · Yi Zhang · En Zhu -
2022 Poster: Randomized Sketches for Clustering: Fast and Optimal Kernel $k$-Means »
Rong Yin · Yong Liu · Weiping Wang · Dan Meng -
2022 Poster: Stability and Generalization of Kernel Clustering: from Single Kernel to Multiple Kernel »
Weixuan Liang · Xinwang Liu · Yong Liu · sihang zhou · Jun-Jie Huang · Siwei Wang · Jiyuan Liu · Yi Zhang · En Zhu -
2021 Poster: Towards Sharper Generalization Bounds for Structured Prediction »
Shaojie Li · Yong Liu -
2021 Poster: Refined Learning Bounds for Kernel and Approximate $k$-Means »
Yong Liu -
2019 Poster: Two Generator Game: Learning to Sample via Linear Goodness-of-Fit Test »
Lizhong Ding · Mengyang Yu · Li Liu · Fan Zhu · Yong Liu · Yu Li · Ling Shao -
2018 Poster: Multi-Class Learning: From Theory to Algorithm »
Jian Li · Yong Liu · Rong Yin · Hua Zhang · Lizhong Ding · Weiping Wang