Timezone: »
Temporal Graph Networks (TGNs) are powerful on modeling temporal graph data based on their increased complexity. Higher complexity carries with it a higher risk of overfitting, which makes TGNs capture random noise instead of essential semantic information. To address this issue, our idea is to transform the temporal graphs using data augmentation (DA) with adaptive magnitudes, so as to effectively augment the input features and preserve the essential semantic information. Based on this idea, we present the MeTA (Memory Tower Augmentation) module: a multi-level module that processes the augmented graphs of different magnitudes on separate levels, and performs message passing across levels to provide adaptively augmented inputs for every prediction. MeTA can be flexibly applied to the training of popular TGNs to improve their effectiveness without increasing their time complexity. To complement MeTA, we propose three DA strategies to realistically model noise by modifying both the temporal and topological features. Empirical results on standard datasets show that MeTA yields significant gains for the popular TGN models on edge prediction and node classification in an efficient manner.
Author Information
Yiwei Wang (national university of singaore, National University of Singapore)
Yujun Cai (Nanyang Technological University)
Yuxuan Liang (National University of Singapore)
Henghui Ding (Swiss Federal Institute of Technology)
Changhu Wang (ByteDance.Inc)
Siddharth Bhatia (National University of Singapore)
Bryan Hooi (National University of Singapore)
More from the Same Authors
-
2023 Poster: Proximity-Informed Calibration for Deep Neural Networks »
Miao Xiong · Ailin Deng · Pang Wei Koh · Jiaying Wu · Shen Li · Jianqing Xu · Bryan Hooi -
2023 Poster: LMC: Large Model Collaboration for Training-Free Open-Set Object Recognition »
Haoxuan Qu · Xiaofei Hui · Yujun Cai · Jun Liu -
2023 Poster: Expanding Small-Scale Datasets with Guided Imagination »
Yifan Zhang · Daquan Zhou · Bryan Hooi · Kai Wang · Jiashi Feng -
2023 Poster: Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment »
Yutong Xia · Yuxuan Liang · Haomin Wen · Xu Liu · Kun Wang · Zhengyang Zhou · Roger Zimmermann -
2023 Poster: LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting »
Xu Liu · Yutong Xia · Yuxuan Liang · Junfeng Hu · Yiwei Wang · LEI BAI · Chao Huang · Zhenguang Liu · Bryan Hooi · Roger Zimmermann -
2022 Spotlight: Lightning Talks 5A-2 »
Qiang LI · Zhiwei Xu · Jia-Qi Yang · Thai Hung Le · Haoxuan Qu · Yang Li · Artyom Sorokin · Peirong Zhang · Mira Finkelstein · Nitsan levy · Chung-Yiu Yau · dapeng li · Thommen Karimpanal George · De-Chuan Zhan · Nazar Buzun · Jiajia Jiang · Li Xu · Yichuan Mo · Yujun Cai · Yuliang Liu · Leonid Pugachev · Bin Zhang · Lucy Liu · Hoi-To Wai · Liangliang Shi · Majid Abdolshah · Yoav Kolumbus · Lin Geng Foo · Junchi Yan · Mikhail Burtsev · Lianwen Jin · Yuan Zhan · Dung Nguyen · David Parkes · Yunpeng Baiia · Jun Liu · Kien Do · Guoliang Fan · Jeffrey S Rosenschein · Sunil Gupta · Sarah Keren · Svetha Venkatesh -
2022 Spotlight: Heatmap Distribution Matching for Human Pose Estimation »
Haoxuan Qu · Li Xu · Yujun Cai · Lin Geng Foo · Jun Liu -
2022 : KeyNote 2 by Bryan Hooi : Temporal Graph Learning: Some Challenges and Recent Directions »
Bryan Hooi -
2022 Poster: Heatmap Distribution Matching for Human Pose Estimation »
Haoxuan Qu · Li Xu · Yujun Cai · Lin Geng Foo · Jun Liu -
2022 Poster: MGNNI: Multiscale Graph Neural Networks with Implicit Layers »
Juncheng Liu · Bryan Hooi · Kenji Kawaguchi · Xiaokui Xiao -
2022 Poster: Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition »
Yifan Zhang · Bryan Hooi · Lanqing Hong · Jiashi Feng -
2021 Poster: Directed Graph Contrastive Learning »
Zekun Tong · Yuxuan Liang · Henghui Ding · Yongxing Dai · Xinke Li · Changhu Wang -
2021 Poster: Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning »
Yifan Zhang · Bryan Hooi · Dapeng Hu · Jian Liang · Jiashi Feng -
2021 Poster: SSMF: Shifting Seasonal Matrix Factorization »
Koki Kawabata · Siddharth Bhatia · Rui Liu · Mohit Wadhwa · Bryan Hooi -
2021 Poster: Direct Multi-view Multi-person 3D Pose Estimation »
tao wang · Jianfeng Zhang · Yujun Cai · Shuicheng Yan · Jiashi Feng -
2021 Poster: EIGNN: Efficient Infinite-Depth Graph Neural Networks »
Juncheng Liu · Kenji Kawaguchi · Bryan Hooi · Yiwei Wang · Xiaokui Xiao -
2020 Poster: Is normalization indispensable for training deep neural network? »
Jie Shao · Kai Hu · Changhu Wang · Xiangyang Xue · Bhiksha Raj -
2020 Poster: Digraph Inception Convolutional Networks »
Zekun Tong · Yuxuan Liang · Changsheng Sun · Xinke Li · David Rosenblum · Andrew Lim -
2020 Oral: Is normalization indispensable for training deep neural network? »
Jie Shao · Kai Hu · Changhu Wang · Xiangyang Xue · Bhiksha Raj