Timezone: »
Poster
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar · Xinran Zhu · Leo Huang · Jacob Gardner · David Bindel
Gaussian processes with derivative information are useful in many settings where derivative information is available, including numerous Bayesian optimization and regression tasks that arise in the natural sciences. Incorporating derivative observations, however, comes with a dominating $O(N^3D^3)$ computational cost when training on $N$ points in $D$ input dimensions. This is intractable for even moderately sized problems. While recent work has addressed this intractability in the low-$D$ setting, the high-$N$, high-$D$ setting is still unexplored and of great value, particularly as machine learning problems increasingly become high dimensional. In this paper, we introduce methods to achieve fully scalable Gaussian process regression with derivatives using variational inference. Analogous to the use of inducing values to sparsify the labels of a training set, we introduce the concept of inducing directional derivatives to sparsify the partial derivative information of the training set. This enables us to construct a variational posterior that incorporates derivative information but whose size depends neither on the full dataset size $N$ nor the full dimensionality $D$. We demonstrate the full scalability of our approach on a variety of tasks, ranging from a high dimensional Stellarator fusion regression task to training graph convolutional neural networks on PubMed using Bayesian optimization. Surprisingly, we additionally find that our approach can improve regression performance even in settings where only label data is available.
Author Information
Misha Padidar (Cornell University)
Xinran Zhu (Cornell University)
Leo Huang (Cornell University)
Jacob Gardner (University of Pennsylvania)
David Bindel (Cornell University)
More from the Same Authors
-
2022 : Efficient Variational Gaussian Processes Initialization via Kernel-based Least Squares Fitting »
Xinran Zhu · David Bindel · Jacob Gardner -
2022 : Q & A »
Jacob Gardner · Virginia Aglietti · Janardhan Rao Doppa -
2022 Tutorial: Advances in Bayesian Optimization »
Janardhan Rao Doppa · Virginia Aglietti · Jacob Gardner -
2022 : Tutorial part 1 »
Jacob Gardner · Virginia Aglietti · Janardhan Rao Doppa -
2022 : Panel Discussion »
Jacob Gardner · Marta Blangiardo · Viacheslav Borovitskiy · Jasper Snoek · Paula Moraga · Carolina Osorio -
2022 Poster: Local Bayesian optimization via maximizing probability of descent »
Quan Nguyen · Kaiwen Wu · Jacob Gardner · Roman Garnett -
2022 Poster: Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients »
Kyurae Kim · Jisu Oh · Jacob Gardner · Adji Bousso Dieng · Hongseok Kim -
2022 Poster: Local Latent Space Bayesian Optimization over Structured Inputs »
Natalie Maus · Haydn Jones · Juston Moore · Matt Kusner · John Bradshaw · Jacob Gardner -
2020 Poster: Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization »
Geoff Pleiss · Martin Jankowiak · David Eriksson · Anil Damle · Jacob Gardner -
2020 Poster: Neural Manifold Ordinary Differential Equations »
Aaron Lou · Derek Lim · Isay Katsman · Leo Huang · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa -
2020 Poster: Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees »
Shali Jiang · Daniel Jiang · Maximilian Balandat · Brian Karrer · Jacob Gardner · Roman Garnett -
2018 Poster: Scaling Gaussian Process Regression with Derivatives »
David Eriksson · Kun Dong · Eric Lee · David Bindel · Andrew Wilson -
2018 Poster: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2018 Spotlight: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2017 Poster: Scalable Log Determinants for Gaussian Process Kernel Learning »
Kun Dong · David Eriksson · Hannes Nickisch · David Bindel · Andrew Wilson -
2015 Poster: Robust Spectral Inference for Joint Stochastic Matrix Factorization »
Moontae Lee · David Bindel · David Mimno