Timezone: »
In this paper, we consider a different data format for images: vector graphics. In contrast to raster graphics which are widely used in image recognition, vector graphics can be scaled up or down into any resolution without aliasing or information loss, due to the analytic representation of the primitives in the document. Furthermore, vector graphics are able to give extra structural information on how low-level elements group together to form high level shapes or structures. These merits of graphic vectors have not been fully leveraged in existing methods. To explore this data format, we target on the fundamental recognition tasks: object localization and classification. We propose an efficient CNN-free pipeline that does not render the graphic into pixels (i.e. rasterization), and takes textual document of the vector graphics as input, called YOLaT (You Only Look at Text). YOLaT builds multi-graphs to model the structural and spatial information in vector graphics, and a dual-stream graph neural network is proposed to detect objects from the graph. Our experiments show that by directly operating on vector graphics, YOLaT outperforms raster-graphic based object detection baselines in terms of both average precision and efficiency. Code is available at https://github.com/microsoft/YOLaT-VectorGraphicsRecognition.
Author Information
XINYANG JIANG (Microsoft Research)
LU LIU (University of Technology Sydney)
Lu Liu is a 3-rd year Ph.D. student from University of Technology Sydney. Her research interests lie in Machine Learning, Meta-learning and Low-shot learning.
Caihua Shan (Microsoft)
Yifei Shen (HKUST)
Xuanyi Dong (University of Technology Sydney)
Xuanyi Dong is 3-rd year Ph.D. student of Centre for Artificial Intelligence at University of Technology Sydney. His research topic is automated deep learning, especially neural architecture search and its application to computer vision. He has published almost 20 papers on top-tiered conferences and journals including CVPR, ICCV, NuerIPS, T-PAMI. He was elected as one of the 2019 Google Ph.D. Fellows.
Dongsheng Li (IBM Research - China)
More from the Same Authors
-
2022 Poster: Parameter-free Dynamic Graph Embedding for Link Prediction »
Jiahao Liu · Dongsheng Li · Hansu Gu · Tun Lu · Peng Zhang · Ning Gu -
2022 : Sparse Mixture-of-Experts are Domain Generalizable Learners »
Bo Li · Yifei Shen · Jingkang Yang · Yezhen Wang · Jiawei Ren · Tong Che · Jun Zhang · Ziwei Liu -
2023 Poster: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face »
Yongliang Shen · Kaitao Song · Xu Tan · Dongsheng Li · Weiming Lu · Yueting Zhuang -
2023 Poster: Symbolic Discovery of Optimization Algorithms »
Xiangning Chen · Chen Liang · Da Huang · Esteban Real · Kaiyuan Wang · Hieu Pham · Xuanyi Dong · Thang Luong · Cho-Jui Hsieh · Yifeng Lu · Quoc V Le -
2023 Poster: DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining »
Sang Michael Xie · Hieu Pham · Xuanyi Dong · Nan Du · Hanxiao Liu · Yifeng Lu · Percy Liang · Quoc V Le · Tengyu Ma · Adams Wei Yu -
2023 Poster: Learning Topology-Agnostic EEG Representations with Geometry-Aware Modeling »
Ke Yi · Yansen Wang · Kan Ren · Dongsheng Li -
2023 Poster: Train Faster, Perform Better: Modular Adaptive Training in Over-Parameterized Models »
Yubin Shi · Yixuan Chen · Mingzhi Dong · Xiaochen Yang · Dongsheng Li · Yujiang Wang · Robert Dick · Qin Lv · Yingying Zhao · Fan Yang · Tun Lu · Ning Gu · Li Shang -
2023 Poster: ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling »
Yuqi Chen · Kan Ren · Yansen Wang · Yuchen Fang · Weiwei Sun · Dongsheng Li -
2023 Poster: ImageBrush: Learning Visual In-Context Instructions for Exemplar-Based Image Manipulation »
ya sheng sun · Yifan Yang · Houwen Peng · Yifei Shen · Yuqing Yang · Han Hu · Lili Qiu · Hideki Koike -
2022 Spotlight: Federated Learning from Pre-Trained Models: A Contrastive Learning Approach »
Yue Tan · Guodong Long · Jie Ma · LU LIU · Tianyi Zhou · Jing Jiang -
2022 Spotlight: Lightning Talks 3A-1 »
Shu Ding · Wanxing Chang · Jiyang Guan · Mouxiang Chen · Guan Gui · Yue Tan · Shiyun Lin · Guodong Long · Yuze Han · Wei Wang · Zhen Zhao · Ye Shi · Jian Liang · Chenghao Liu · Lei Qi · Ran He · Jie Ma · Zemin Liu · Xiang Li · Hoang Tuan · Luping Zhou · Zhihua Zhang · Jianling Sun · Jingya Wang · LU LIU · Tianyi Zhou · Lei Wang · Jing Jiang · Yinghuan Shi -
2022 Poster: Reinforcement Learning with Automated Auxiliary Loss Search »
Tairan He · Yuge Zhang · Kan Ren · Minghuan Liu · Che Wang · Weinan Zhang · Yuqing Yang · Dongsheng Li -
2022 Poster: Transcormer: Transformer for Sentence Scoring with Sliding Language Modeling »
Kaitao Song · Yichong Leng · Xu Tan · Yicheng Zou · Tao Qin · Dongsheng Li -
2022 Poster: Bootstrapped Transformer for Offline Reinforcement Learning »
Kerong Wang · Hanye Zhao · Xufang Luo · Kan Ren · Weinan Zhang · Dongsheng Li -
2022 Poster: Federated Learning from Pre-Trained Models: A Contrastive Learning Approach »
Yue Tan · Guodong Long · Jie Ma · LU LIU · Tianyi Zhou · Jing Jiang -
2022 Poster: VRL3: A Data-Driven Framework for Visual Deep Reinforcement Learning »
Che Wang · Xufang Luo · Keith Ross · Dongsheng Li -
2021 Poster: Reinforcement Learning Enhanced Explainer for Graph Neural Networks »
Caihua Shan · Yifei Shen · Yao Zhang · Xiang Li · Dongsheng Li -
2020 Poster: PyGlove: Symbolic Programming for Automated Machine Learning »
Daiyi Peng · Xuanyi Dong · Esteban Real · Mingxing Tan · Yifeng Lu · Gabriel Bender · Hanxiao Liu · Adam Kraft · Chen Liang · Quoc V Le -
2020 Oral: PyGlove: Symbolic Programming for Automated Machine Learning »
Daiyi Peng · Xuanyi Dong · Esteban Real · Mingxing Tan · Yifeng Lu · Gabriel Bender · Hanxiao Liu · Adam Kraft · Chen Liang · Quoc V Le -
2019 Poster: Network Pruning via Transformable Architecture Search »
Xuanyi Dong · Yi Yang -
2019 Poster: Learning to Propagate for Graph Meta-Learning »
LU LIU · Tianyi Zhou · Guodong Long · Jing Jiang · Chengqi Zhang -
2017 Poster: Mixture-Rank Matrix Approximation for Collaborative Filtering »
Dongsheng Li · Chao Chen · Wei Liu · Tun Lu · Ning Gu · Stephen Chu