Timezone: »
Poster
Towards Sample-Optimal Compressive Phase Retrieval with Sparse and Generative Priors
Zhaoqiang Liu · Subhroshekhar Ghosh · Jonathan Scarlett
Compressive phase retrieval is a popular variant of the standard compressive sensing problem in which the measurements only contain magnitude information. In this paper, motivated by recent advances in deep generative models, we provide recovery guarantees with near-optimal sample complexity for phase retrieval with generative priors. We first show that when using i.i.d. Gaussian measurements and an $L$-Lipschitz continuous generative model with bounded $k$-dimensional inputs, roughly $O(k \log L)$ samples suffice to guarantee that any signal minimizing an amplitude-based empirical loss function is close to the true signal. Attaining this sample complexity with a practical algorithm remains a difficult challenge, and finding a good initialization for gradient-based methods has been observed to pose a major bottleneck. To partially address this, we further show that roughly $O(k \log L)$ samples ensure sufficient closeness between the underlying signal and any {\em globally optimal} solution to an optimization problem designed for spectral initialization (though finding such a solution may still be challenging). We also adapt this result to sparse phase retrieval, and show that $O(s \log n)$ samples are sufficient for a similar guarantee when the underlying signal is $s$-sparse and $n$-dimensional, matching an information-theoretic lower bound. While these guarantees do not directly correspond to a practical algorithm, we propose a practical spectral initialization method motivated by our findings, and experimentally observe performance gains over various existing spectral initialization methods for sparse phase retrieval.
Author Information
Zhaoqiang Liu (National University of Singapore)
Subhroshekhar Ghosh (National University of Singapore)
Jonathan Scarlett (National University of Singapore)
More from the Same Authors
-
2021 Spotlight: Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD »
Rémi Bardenet · Subhroshekhar Ghosh · Meixia LIN -
2022 Spotlight: Misspecified Phase Retrieval with Generative Priors »
Zhaoqiang Liu · Xinshao Wang · Jiulong Liu -
2022 Poster: A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits »
Ilija Bogunovic · Zihan Li · Andreas Krause · Jonathan Scarlett -
2021 Poster: Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD »
Rémi Bardenet · Subhroshekhar Ghosh · Meixia LIN -
2020 Poster: The Generalized Lasso with Nonlinear Observations and Generative Priors »
Zhaoqiang Liu · Jonathan Scarlett -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 Poster: Learning Erdos-Renyi Random Graphs via Edge Detecting Queries »
Zihan Li · Matthias Fresacher · Jonathan Scarlett -
2018 Poster: Adversarially Robust Optimization with Gaussian Processes »
Ilija Bogunovic · Jonathan Scarlett · Stefanie Jegelka · Volkan Cevher -
2018 Spotlight: Adversarially Robust Optimization with Gaussian Processes »
Ilija Bogunovic · Jonathan Scarlett · Stefanie Jegelka · Volkan Cevher