Timezone: »
Traditional seismic inversion (SI) maps the hundreds of terabytes of raw-field data to subsurface properties in gigabytes. This inversion process is expensive, requiring over a year of human and computational effort. Recently, data-driven approaches equipped with Deep learning (DL) are envisioned to improve SI efficiency. However, these improvements are restricted to data with highly reduced scale and complexity. To extend these approaches to real-scale seismic data, researchers need to process raw nav-merge seismic data into an image and perform convolution. We argue that this convolution-based way of SI is not only computationally expensive but also conceptually problematic. Seismic data is not naturally an image and need not be processed as images. In this work, we go beyond convolution and propose a novel SI method. We solve the scalability of SI by proposing a new auxiliary learning paradigm for SI (Aux-SI). This paradigm breaks the SI into local inversion tasks, which predicts each small chunk of subsurface properties using surrounding seismic data. Aux-SI combines these local predictions to obtain the entire subsurface model. However, even this local inversion is still challenging due to: (1) high-dimensional, spatially irregular multi-modal seismic data, (2) there is no concrete spatial mapping (or alignment) between subsurface properties and raw data. To handle these challenges, we propose an all-MLP architecture, Multi-Modal Information Unscrambler (MMI-Unscrambler), that unscrambles seismic information by ingesting all available multi-modal data. The experiment shows that MMI-Unscrambler outperforms both SOTA U-Net and Transformer models on simulation data. We also scale MMI-Unscrambler to raw-field nav-merge data on Gulf-of-Mexico to obtain a geologically sound velocity model with an SSIM score of 0.8. To the best of our knowledge, this is the first successful demonstration of the DL approach on SI for real, large-scale, and complicated raw field data.
Author Information
Aditya Desai (Rice University)
Zhaozhuo Xu (Rice University)
Menal Gupta (Shell)
Anu Chandran (Shell International Exploration and Production)
Antoine Vial-Aussavy (Imperial College London)
Anshumali Shrivastava (Rice University / ThirdAI Corp.)
More from the Same Authors
-
2021 Spotlight: Practical Near Neighbor Search via Group Testing »
Joshua Engels · Benjamin Coleman · Anshumali Shrivastava -
2021 : PISTACHIO: Patch Importance Sampling To Accelerate CNNs via a Hash Index Optimizer »
Zhaozhuo Xu · Anshumali Shrivastava -
2022 : Adaptive Sparse Federated Learning in Large Output Spaces via Hashing »
Zhaozhuo Xu · Luyang Liu · Zheng Xu · Anshumali Shrivastava -
2022 Poster: The trade-offs of model size in large recommendation models : 100GB to 10MB Criteo-tb DLRM model »
Aditya Desai · Anshumali Shrivastava -
2022 Poster: Retaining Knowledge for Learning with Dynamic Definition »
Zichang Liu · Benjamin Coleman · Tianyi Zhang · Anshumali Shrivastava -
2022 Poster: Graph Reordering for Cache-Efficient Near Neighbor Search »
Benjamin Coleman · Santiago Segarra · Alexander Smola · Anshumali Shrivastava -
2021 Poster: Breaking the Linear Iteration Cost Barrier for Some Well-known Conditional Gradient Methods Using MaxIP Data-structures »
Zhaozhuo Xu · Zhao Song · Anshumali Shrivastava -
2021 Poster: Practical Near Neighbor Search via Group Testing »
Joshua Engels · Benjamin Coleman · Anshumali Shrivastava -
2021 Poster: Locality Sensitive Teaching »
Zhaozhuo Xu · Beidi Chen · Chaojian Li · Weiyang Liu · Le Song · Yingyan Lin · Anshumali Shrivastava -
2020 Poster: Adaptive Learned Bloom Filter (Ada-BF): Efficient Utilization of the Classifier with Application to Real-Time Information Filtering on the Web »
Zhenwei Dai · Anshumali Shrivastava -
2020 Session: Orals & Spotlights Track 03: Language/Audio Applications »
Anshumali Shrivastava · Dilek Hakkani-Tur -
2019 Poster: Fast and Accurate Stochastic Gradient Estimation »
Beidi Chen · Yingchen Xu · Anshumali Shrivastava -
2019 Poster: Extreme Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon Search with 50M Products »
Tharun Kumar Reddy Medini · Qixuan Huang · Yiqiu Wang · Vijai Mohan · Anshumali Shrivastava -
2018 Poster: Topkapi: Parallel and Fast Sketches for Finding Top-K Frequent Elements »
Ankush Mandal · He Jiang · Anshumali Shrivastava · Vivek Sarkar -
2016 Poster: Simple and Efficient Weighted Minwise Hashing »
Anshumali Shrivastava -
2014 Poster: Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) »
Anshumali Shrivastava · Ping Li -
2014 Oral: Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) »
Anshumali Shrivastava · Ping Li -
2013 Poster: Beyond Pairwise: Provably Fast Algorithms for Approximate $k$-Way Similarity Search »
Anshumali Shrivastava · Ping Li -
2011 Poster: Hashing Algorithms for Large-Scale Learning »
Ping Li · Anshumali Shrivastava · Joshua L Moore · Arnd C König