Timezone: »
Deep Markov models (DMM) are generative models which are scalable and expressive generalization of Markov models for representation, learning, and inference problems. However, the fundamental stochastic stability guarantees of such models have not been thoroughly investigated. In this paper, we present a novel stability analysis method and provide sufficient conditions of DMM's stochastic stability. The proposed stability analysis is based on the contraction of probabilistic maps modeled by deep neural networks. We make connections between the spectral properties of neural network's weights and different types of used activation function on the stability and overall dynamic behavior of DMMs with Gaussian distributions. Based on the theory, we propose a few practical methods for designing constrained DMMs with guaranteed stability. We empirically substantiate our theoretical results via intuitive numerical experiments using the proposed stability constraints.
Author Information
Jan Drgona (Pacific Northwest National Laboratory)
I am a data scientist in the Physics and Computational Sciences Division (PCSD) at Pacific Northwest National Laboratory, Richland, WA. My current research interests fall in the intersection of model-based optimal control, constrained optimization, and machine learning.
Sayak Mukherjee (Pacific Northwest National Laboratory)
Jiaxin Zhang (Oak Ridge National Laboratory)
I am now a Research Staff in Machine Learning and Data Analytics Group, Computer Science and Mathematics Division at Oak Ridge National Laboratory (ORNL). My current research interest is on Artificial Intelligence for Science and Engineering (AISE). My broad interests revolve around robust machine learning, uncertainty quantification, inverse problems, and numerical optimization.
Frank Liu (Oak Ridge National Lab)
Mahantesh Halappanavar (Pacific Northwest National Laboratory)
More from the Same Authors
-
2020 : Physics-constrained Deep Recurrent Neural Models of Building Thermal Dynamics »
Jan Drgona -
2020 : A Nonlocal-Gradient Descent Method for Inverse Design in Nanophotonics »
Sirui Bi · Jiaxin Zhang · Guannan Zhang -
2020 : Scalable Deep-Learning-Accelerated Topology Optimization for Additively Manufactured Materials »
Sirui Bi · Jiaxin Zhang · Guannan Zhang -
2021 : Safe Reinforcement Learning for Grid Voltage Control »
Thanh Long Vu · Sayak Mukherjee · Renke Huang · Qiuhua Huang -
2021 : Self-Supervised Anomaly Detection via Neural Autoregressive Flows with Active Learning »
Jiaxin Zhang · Kyle Saleeby · Thomas Feldhausen · Sirui Bi · Alex Plotkowski · David Womble -
2021 : Self-Supervised Anomaly Detection via Neural Autoregressive Flows with Active Learning »
Jiaxin Zhang · Kyle Saleeby · Thomas Feldhausen · Sirui Bi · Alex Plotkowski · David Womble -
2022 Workshop: Tackling Climate Change with Machine Learning »
Peetak Mitra · Maria João Sousa · Mark Roth · Jan Drgona · Emma Strubell · Yoshua Bengio -
2022 Competition: The CityLearn Challenge 2022 »
Zoltan Nagy · Kingsley Nweye · Sharada Mohanty · Siva Sankaranarayanan · Jan Drgona · Tianzhen Hong · Sourav Dey · Gregor Henze -
2021 Workshop: Tackling Climate Change with Machine Learning »
Maria João Sousa · Hari Prasanna Das · Sally Simone Fobi · Jan Drgona · Tegan Maharaj · Yoshua Bengio -
2021 : Differentiable Parametric Optimization Approach to Power System Load Modeling »
Jan Drgona · Andrew August · Elliott Skomski -
2021 : Neural Differentiable Predictive Control »
Jan Drgona · Aaron Tuor · Draguna Vrabie -
2020 : 9 - Thermodynamic Consistent Neural Networks for Learning Material Interfacial Mechanics »
Jiaxin Zhang -
2019 : Lunch + Poster Session »
Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans -
2019 Poster: Learning nonlinear level sets for dimensionality reduction in function approximation »
Guannan Zhang · Jiaxin Zhang · Jacob Hinkle -
2012 Poster: Feature Clustering for Accelerating Parallel Coordinate Descent »
Chad Scherrer · Ambuj Tewari · Mahantesh Halappanavar · David Haglin