Timezone: »
Neural agents trained in reinforcement learning settings can learn to communicate among themselves via discrete tokens, accomplishing as a team what agents would be unable to do alone. However, the current standard of using one-hot vectors as discrete communication tokens prevents agents from acquiring more desirable aspects of communication such as zero-shot understanding. Inspired by word embedding techniques from natural language processing, we propose neural agent architectures that enables them to communicate via discrete tokens derived from a learned, continuous space. We show in a decision theoretic framework that our technique optimizes communication over a wide range of scenarios, whereas one-hot tokens are only optimal under restrictive assumptions. In self-play experiments, we validate that our trained agents learn to cluster tokens in semantically-meaningful ways, allowing them communicate in noisy environments where other techniques fail. Lastly, we demonstrate both that agents using our method can effectively respond to novel human communication and that humans can understand unlabeled emergent agent communication, outperforming the use of one-hot communication.
Author Information
Mycal Tucker (Massachusetts Institute of Technology)
Huao Li (University of Pittsburgh)
Siddharth Agrawal (Carnegie Mellon University)
Dana Hughes (Carnegie Mellon University)
Katia Sycara
Michael Lewis (University of Pittsburgh)
Julie A Shah (MIT)
More from the Same Authors
-
2022 : Trading off Utility, Informativeness, and Complexity in Emergent Communication »
Mycal Tucker · Julie A Shah · Roger Levy · Noga Zaslavsky -
2022 : Towards True Lossless Sparse Communication in Multi-Agent Systems »
Seth Karten · Mycal Tucker · Siva Kailas · Katia Sycara -
2022 : Fast Adaptation via Human Diagnosis of Task Distribution Shift »
Andi Peng · Mark Ho · Aviv Netanyahu · Julie A Shah · Pulkit Agrawal -
2022 : Temporal Logic Imitation: Learning Plan-Satisficing Motion Policies from Demonstrations »
Felix Yanwei Wang · Nadia Figueroa · Shen Li · Ankit Shah · Julie A Shah -
2022 : Aligning Robot Representations with Humans »
Andreea Bobu · Andi Peng · Pulkit Agrawal · Julie A Shah · Anca Dragan -
2022 : Generalization and Translatability in Emergent Communication via Informational Constraints »
Mycal Tucker · Roger Levy · Julie A Shah · Noga Zaslavsky -
2023 Poster: Human-Guided Complexity-Controlled Abstractions »
Andi Peng · Mycal Tucker · Eoin Kenny · Noga Zaslavsky · Pulkit Agrawal · Julie A Shah -
2023 Poster: Characterizing Out-of-Distribution Error via Optimal Transport »
Yuzhe Lu · Yilong Qin · Runtian Zhai · Andrew Shen · Ketong Chen · Zhenlin Wang · Soheil Kolouri · Simon Stepputtis · Joseph Campbell · Katia Sycara -
2022 : Generalization and Translatability in Emergent Communication via Informational Constraints »
Mycal Tucker · Roger Levy · Julie A Shah · Noga Zaslavsky -
2022 Workshop: Information-Theoretic Principles in Cognitive Systems »
Noga Zaslavsky · Mycal Tucker · Sarah Marzen · Irina Higgins · Stephanie Palmer · Samuel J Gershman -
2022 Poster: Trading off Utility, Informativeness, and Complexity in Emergent Communication »
Mycal Tucker · Roger Levy · Julie Shah · Noga Zaslavsky -
2021 : [O5] Do Feature Attribution Methods Correctly Attribute Features? »
Yilun Zhou · Serena Booth · Marco Tulio Ribeiro · Julie A Shah -
2018 Poster: Bayesian Inference of Temporal Task Specifications from Demonstrations »
Ankit Shah · Pritish Kamath · Julie A Shah · Shen Li -
2016 Workshop: The Future of Interactive Machine Learning »
Kory Mathewson @korymath · Kaushik Subramanian · Mark Ho · Robert Loftin · Joseph L Austerweil · Anna Harutyunyan · Doina Precup · Layla El Asri · Matthew Gombolay · Jerry Zhu · Sonia Chernova · Charles Isbell · Patrick M Pilarski · Weng-Keen Wong · Manuela Veloso · Julie A Shah · Matthew Taylor · Brenna Argall · Michael Littman -
2015 Poster: Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction »
Been Kim · Julie A Shah · Finale Doshi-Velez -
2014 Poster: Fairness in Multi-Agent Sequential Decision-Making »
Chongjie Zhang · Julie A Shah -
2014 Poster: The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification »
Been Kim · Cynthia Rudin · Julie A Shah