Timezone: »
Poster
Bandit Phase Retrieval
Tor Lattimore · Botao Hao
We study a bandit version of phase retrieval where the learner chooses actions $(A_t)_{t=1}^n$ in the $d$-dimensional unit ball and the expected reward is $\langle A_t, \theta_\star \rangle^2$ with $\theta_\star \in \mathbb R^d$ an unknown parameter vector. We prove an upper bound on the minimax cumulative regret in this problem of $\smash{\tilde \Theta(d \sqrt{n})}$, which matches known lower bounds up to logarithmic factors and improves on the best known upper bound by a factor of $\smash{\sqrt{d}}$. We also show that the minimax simple regret is $\smash{\tilde \Theta(d / \sqrt{n})}$ and that this is only achievable by an adaptive algorithm. Our analysis shows that an apparently convincing heuristic for guessing lower bounds can be misleading and that uniform bounds on the information ratio for information-directed sampling (Russo and Van Roy, 2014) are not sufficient for optimal regret.
Author Information
Tor Lattimore (DeepMind)
Botao Hao (Deepmind)
More from the Same Authors
-
2021 Spotlight: Variational Bayesian Optimistic Sampling »
Brendan O'Donoghue · Tor Lattimore -
2021 Spotlight: Information Directed Sampling for Sparse Linear Bandits »
Botao Hao · Tor Lattimore · Wei Deng -
2022 Poster: The Neural Testbed: Evaluating Joint Predictions »
Ian Osband · Zheng Wen · Seyed Mohammad Asghari · Vikranth Dwaracherla · Xiuyuan Lu · MORTEZA IBRAHIMI · Dieterich Lawson · Botao Hao · Brendan O'Donoghue · Benjamin Van Roy -
2022 Poster: Regret Bounds for Information-Directed Reinforcement Learning »
Botao Hao · Tor Lattimore -
2021 Poster: Variational Bayesian Optimistic Sampling »
Brendan O'Donoghue · Tor Lattimore -
2021 Poster: Information Directed Sampling for Sparse Linear Bandits »
Botao Hao · Tor Lattimore · Wei Deng -
2020 Poster: High-Dimensional Sparse Linear Bandits »
Botao Hao · Tor Lattimore · Mengdi Wang -
2020 Poster: Model Selection in Contextual Stochastic Bandit Problems »
Aldo Pacchiano · My Phan · Yasin Abbasi Yadkori · Anup Rao · Julian Zimmert · Tor Lattimore · Csaba Szepesvari -
2020 Poster: Gaussian Gated Linear Networks »
David Budden · Adam Marblestone · Eren Sezener · Tor Lattimore · Gregory Wayne · Joel Veness -
2019 Poster: Bootstrapping Upper Confidence Bound »
Botao Hao · Yasin Abbasi Yadkori · Zheng Wen · Guang Cheng -
2019 Poster: A Geometric Perspective on Optimal Representations for Reinforcement Learning »
Marc Bellemare · Will Dabney · Robert Dadashi · Adrien Ali Taiga · Pablo Samuel Castro · Nicolas Le Roux · Dale Schuurmans · Tor Lattimore · Clare Lyle -
2019 Poster: Connections Between Mirror Descent, Thompson Sampling and the Information Ratio »
Julian Zimmert · Tor Lattimore