Timezone: »
Variational autoencoders (VAEs) are one of the powerful likelihood-based generative models with applications in many domains. However, they struggle to generate high-quality images, especially when samples are obtained from the prior without any tempering. One explanation for VAEs' poor generative quality is the prior hole problem: the prior distribution fails to match the aggregate approximate posterior. Due to this mismatch, there exist areas in the latent space with high density under the prior that do not correspond to any encoded image. Samples from those areas are decoded to corrupted images. To tackle this issue, we propose an energy-based prior defined by the product of a base prior distribution and a reweighting factor, designed to bring the base closer to the aggregate posterior. We train the reweighting factor by noise contrastive estimation, and we generalize it to hierarchical VAEs with many latent variable groups. Our experiments confirm that the proposed noise contrastive priors improve the generative performance of state-of-the-art VAEs by a large margin on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ 256 datasets. Our method is simple and can be applied to a wide variety of VAEs to improve the expressivity of their prior distribution.
Author Information
Jyoti Aneja (University of Illinois, Urbana Champaign)
I am a graduate student at UIUC working in image captioning using GANs
Alex Schwing (University of Illinois at Urbana-Champaign)
Jan Kautz (NVIDIA)
Arash Vahdat (NVIDIA Research)
More from the Same Authors
-
2021 Spotlight: Per-Pixel Classification is Not All You Need for Semantic Segmentation »
Bowen Cheng · Alex Schwing · Alexander Kirillov -
2021 : Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations »
Benjamin Wu · Oliver Hennigh · Jan Kautz · Sanjay Choudhry · Wonmin Byeon -
2022 Spotlight: ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models »
Chunyuan Li · Haotian Liu · Liunian Li · Pengchuan Zhang · Jyoti Aneja · Jianwei Yang · Ping Jin · Houdong Hu · Zicheng Liu · Yong Jae Lee · Jianfeng Gao -
2022 Poster: ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models »
Chunyuan Li · Haotian Liu · Liunian Li · Pengchuan Zhang · Jyoti Aneja · Jianwei Yang · Ping Jin · Houdong Hu · Zicheng Liu · Yong Jae Lee · Jianfeng Gao -
2021 Poster: Bridging the Imitation Gap by Adaptive Insubordination »
Luca Weihs · Unnat Jain · Iou-Jen Liu · Jordi Salvador · Svetlana Lazebnik · Aniruddha Kembhavi · Alex Schwing -
2021 Poster: Per-Pixel Classification is Not All You Need for Semantic Segmentation »
Bowen Cheng · Alex Schwing · Alexander Kirillov -
2021 Poster: Score-based Generative Modeling in Latent Space »
Arash Vahdat · Karsten Kreis · Jan Kautz -
2021 Poster: Controllable and Compositional Generation with Latent-Space Energy-Based Models »
Weili Nie · Arash Vahdat · Anima Anandkumar -
2021 Poster: Don’t Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence »
Tianshi Cao · Alex Bie · Arash Vahdat · Sanja Fidler · Karsten Kreis -
2021 Poster: Class-agnostic Reconstruction of Dynamic Objects from Videos »
Zhongzheng Ren · Xiaoming Zhao · Alex Schwing -
2021 Poster: Coupled Segmentation and Edge Learning via Dynamic Graph Propagation »
Zhiding Yu · Rui Huang · Wonmin Byeon · Sifei Liu · Guilin Liu · Thomas Breuel · Anima Anandkumar · Jan Kautz -
2021 Poster: Perceptual Score: What Data Modalities Does Your Model Perceive? »
Itai Gat · Idan Schwartz · Alex Schwing -
2020 Poster: NVAE: A Deep Hierarchical Variational Autoencoder »
Arash Vahdat · Jan Kautz -
2020 Spotlight: NVAE: A Deep Hierarchical Variational Autoencoder »
Arash Vahdat · Jan Kautz -
2020 Poster: Online Adaptation for Consistent Mesh Reconstruction in the Wild »
Xueting Li · Sifei Liu · Shalini De Mello · Kihwan Kim · Xiaolong Wang · Ming-Hsuan Yang · Jan Kautz -
2020 Poster: Convolutional Tensor-Train LSTM for Spatio-Temporal Learning »
Jiahao Su · Wonmin Byeon · Jean Kossaifi · Furong Huang · Jan Kautz · Anima Anandkumar -
2019 Poster: Few-shot Video-to-Video Synthesis »
Ting-Chun Wang · Ming-Yu Liu · Andrew Tao · Guilin Liu · Bryan Catanzaro · Jan Kautz -
2019 Poster: Joint-task Self-supervised Learning for Temporal Correspondence »
Xueting Li · Sifei Liu · Shalini De Mello · Xiaolong Wang · Jan Kautz · Ming-Hsuan Yang -
2019 Poster: Dancing to Music »
Hsin-Ying Lee · Xiaodong Yang · Ming-Yu Liu · Ting-Chun Wang · Yu-Ding Lu · Ming-Hsuan Yang · Jan Kautz -
2018 : Jan Kautz »
Jan Kautz -
2018 Poster: Context-aware Synthesis and Placement of Object Instances »
Donghoon Lee · Sifei Liu · Jinwei Gu · Ming-Yu Liu · Ming-Hsuan Yang · Jan Kautz -
2018 Poster: Video-to-Video Synthesis »
Ting-Chun Wang · Ming-Yu Liu · Jun-Yan Zhu · Guilin Liu · Andrew Tao · Jan Kautz · Bryan Catanzaro -
2017 : Poster Session (encompasses coffee break) »
Beidi Chen · Borja Balle · Daniel Lee · iuri frosio · Jitendra Malik · Jan Kautz · Ke Li · Masashi Sugiyama · Miguel A. Carreira-Perpinan · Ramin Raziperchikolaei · Theja Tulabandhula · Yung-Kyun Noh · Adams Wei Yu -
2017 Poster: Unsupervised Image-to-Image Translation Networks »
Ming-Yu Liu · Thomas Breuel · Jan Kautz -
2017 Spotlight: Unsupervised Image-to-Image Translation Networks »
Ming-Yu Liu · Thomas Breuel · Jan Kautz -
2017 Poster: Learning Affinity via Spatial Propagation Networks »
Sifei Liu · Shalini De Mello · Jinwei Gu · Guangyu Zhong · Ming-Hsuan Yang · Jan Kautz -
2017 Poster: Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks »
Arash Vahdat -
2016 Poster: Constraints Based Convex Belief Propagation »
Yaniv Tenzer · Alex Schwing · Kevin Gimpel · Tamir Hazan -
2016 Poster: Learning Deep Parsimonious Representations »
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun -
2015 Poster: Smooth and Strong: MAP Inference with Linear Convergence »
Ofer Meshi · Mehrdad Mahdavi · Alex Schwing -
2014 Poster: Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials »
Shenlong Wang · Alex Schwing · Raquel Urtasun -
2014 Poster: Message Passing Inference for Large Scale Graphical Models with High Order Potentials »
Jian Zhang · Alex Schwing · Raquel Urtasun -
2013 Poster: Latent Structured Active Learning »
Wenjie Luo · Alex Schwing · Raquel Urtasun -
2012 Poster: Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins »
Alex Schwing · Tamir Hazan · Marc Pollefeys · Raquel Urtasun