`

Timezone: »

 
Poster
A Bayesian-Symbolic Approach to Reasoning and Learning in Intuitive Physics
Kai Xu · Akash Srivastava · Dan Gutfreund · Felix Sosa · Tomer Ullman · Josh Tenenbaum · Charles Sutton

Thu Dec 09 12:30 AM -- 02:00 AM (PST) @ None #None

Humans can reason about intuitive physics in fully or partially observed environments even after being exposed to a very limited set of observations. This sample-efficient intuitive physical reasoning is considered a core domain of human common sense knowledge. One hypothesis to explain this remarkable capacity, posits that humans quickly learn approximations to the laws of physics that govern the dynamics of the environment. In this paper, we propose a Bayesian-symbolic framework (BSP) for physical reasoning and learning that is close to human-level sample-efficiency and accuracy. In BSP, the environment is represented by a top-down generative model of entities, which are assumed to interact with each other under unknown force laws over their latent and observed properties. BSP models each of these entities as random variables, and uses Bayesian inference to estimate their unknown properties. For learning the unknown forces, BSP leverages symbolic regression on a novel grammar of Newtonian physics in a bilevel optimization setup. These inference and regression steps are performed in an iterative manner using expectation-maximization, allowing BSP to simultaneously learn force laws while maintaining uncertainty over entity properties. We show that BSP is more sample-efficient compared to neural alternatives on controlled synthetic datasets, demonstrate BSP's applicability to real-world common sense scenes and study BSP's performance on tasks previously used to study human physical reasoning.

Author Information

Kai Xu (University of Edinburgh)
Akash Srivastava (MIT-IBM Watson AI Lab)
Dan Gutfreund (IBM Research)
Felix Sosa (Harvard and Center for Brains, Minds, and Machines)
Tomer Ullman (Harvard)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Charles Sutton (Google)

More from the Same Authors