Timezone: »
In high energy physics (HEP), jets are collections of correlated particles produced ubiquitously in particle collisions such as those at the CERN Large Hadron Collider (LHC). Machine learning (ML)-based generative models, such as generative adversarial networks (GANs), have the potential to significantly accelerate LHC jet simulations. However, despite jets having a natural representation as a set of particles in momentum-space, a.k.a. a particle cloud, there exist no generative models applied to such a dataset. In this work, we introduce a new particle cloud dataset (JetNet), and apply to it existing point cloud GANs. Results are evaluated using (1) 1-Wasserstein distances between high- and low-level feature distributions, (2) a newly developed Fréchet ParticleNet Distance, and (3) the coverage and (4) minimum matching distance metrics. Existing GANs are found to be inadequate for physics applications, hence we develop a new message passing GAN (MPGAN), which outperforms existing point cloud GANs on virtually every metric and shows promise for use in HEP. We propose JetNet as a novel point-cloud-style dataset for the ML community to experiment with, and set MPGAN as a benchmark to improve upon for future generative models. Additionally, to facilitate research and improve accessibility and reproducibility in this area, we release the open-source JetNet Python package with interfaces for particle cloud datasets, implementations for evaluation and loss metrics, and more tools for ML in HEP development.
Author Information
Raghav Kansal (UC San Diego)
Javier Duarte (University of California San Diego)
Hao Su (Stanford)
Breno Orzari (Instituto de Física Teórica - UNESP)
Thiago Tomei (Universidade Estadual Paulista)
Maurizio Pierini (CERN)
Mary Touranakou (CERN)
jean-roch vlimant (California Institute of Technology)
Dimitrios Gunopulos
More from the Same Authors
-
2021 : MLPerf Tiny Benchmark »
Colby Banbury · Vijay Janapa Reddi · Peter Torelli · Nat Jeffries · Csaba Kiraly · Jeremy Holleman · Pietro Montino · David Kanter · Pete Warden · Danilo Pau · Urmish Thakker · antonio torrini · jay cordaro · Giuseppe Di Guglielmo · Javier Duarte · Honson Tran · Nhan Tran · niu wenxu · xu xuesong -
2021 : ManiSkill: Generalizable Manipulation Skill Benchmark with Large-Scale Demonstrations »
Tongzhou Mu · Zhan Ling · Fanbo Xiang · Derek Yang · Xuanlin Li · Stone Tao · Zhiao Huang · Zhiwei Jia · Hao Su -
2021 : From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera Teleoperation »
Yuzhe Qin · Hao Su · Xiaolong Wang -
2021 : An Imperfect machine to search for New Physics: systematic uncertainties in a machine-learning based signal extraction »
Gaia Grosso · Maurizio Pierini -
2021 : Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance »
Steven Tsan · Sukanya Krishna · Raghav Kansal · Anthony Aportela · Farouk Mokhtar · Daniel Diaz · Javier Duarte · Maurizio Pierini · jean-roch vlimant -
2021 : Explaining machine-learned particle-flow reconstruction »
Farouk Mokhtar · Raghav Kansal · Daniel Diaz · Javier Duarte · Maurizio Pierini · jean-roch vlimant -
2022 : How good is the Standard Model? Machine learning multivariate Goodness of Fit tests »
Gaia Grosso · Marco Letizia · Andrea Wulzer · Maurizio Pierini -
2021 Poster: Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation »
Nicklas Hansen · Hao Su · Xiaolong Wang -
2019 : Conclusion on TrackML, a Particle Physics Tracking Machine Learning Challenge Combining Accuracy and Inference Speed »
David Rousseau · jean-roch vlimant -
2018 : TrackML, a Particle Physics Tracking Machine Learning Challenge, Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Isabelle Guyon (ChaLearn), Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University),David Rousseau∗, Yet »
Andrey Ustyuzhanin · jean-roch vlimant -
2018 : TrackML Analyzing some top solutions »
jean-roch vlimant -
2017 Poster: PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space »
Charles Ruizhongtai Qi · Li Yi · Hao Su · Leonidas Guibas