Timezone: »
We propose a Safe Pontryagin Differentiable Programming (Safe PDP) methodology, which establishes a theoretical and algorithmic framework to solve a broad class of safety-critical learning and control tasks---problems that require the guarantee of safety constraint satisfaction at any stage of the learning and control progress. In the spirit of interior-point methods, Safe PDP handles different types of system constraints on states and inputs by incorporating them into the cost or loss through barrier functions. We prove three fundamentals of the proposed Safe PDP: first, both the solution and its gradient in the backward pass can be approximated by solving their more efficient unconstrained counterparts; second, the approximation for both the solution and its gradient can be controlled for arbitrary accuracy by a barrier parameter; and third, importantly, all intermediate results throughout the approximation and optimization strictly respect the constraints, thus guaranteeing safety throughout the entire learning and control process. We demonstrate the capabilities of Safe PDP in solving various safety-critical tasks, including safe policy optimization, safe motion planning, and learning MPCs from demonstrations, on different challenging systems such as 6-DoF maneuvering quadrotor and 6-DoF rocket powered landing.
Author Information
Wanxin Jin (University of Pennsylvania)
Shaoshuai Mou (Purdue University)
George J. Pappas (University of Pennsylvania)
George J. Pappas is the UPS Foundation Professor and Chair of the Department of Electrical and Systems Engineering at the University of Pennsylvania. He also holds a secondary appointment in the Departments of Computer and Information Sciences, and Mechanical Engineering and Applied Mechanics. He is member of the GRASP Lab and the PRECISE Center. He has previously served as the Deputy Dean for Research in the School of Engineering and Applied Science. His research focuses on control theory and in particular, hybrid systems, embedded systems, hierarchical and distributed control systems, with applications to unmanned aerial vehicles, distributed robotics, green buildings, and biomolecular networks. He is a Fellow of IEEE, and has received various awards such as the Antonio Ruberti Young Researcher Prize, the George S. Axelby Award, the O. Hugo Schuck Best Paper Award, the National Science Foundation PECASE, and the George H. Heilmeier Faculty Excellence Award.
More from the Same Authors
-
2022 Spotlight: Learning Operators with Coupled Attention »
Georgios Kissas · Jacob Seidman · Leonardo Ferreira Guilhoto · Victor M. Preciado · George J. Pappas · Paris Perdikaris -
2022 Poster: NOMAD: Nonlinear Manifold Decoders for Operator Learning »
Jacob Seidman · Georgios Kissas · Paris Perdikaris · George J. Pappas -
2022 Poster: Learning Operators with Coupled Attention »
Georgios Kissas · Jacob Seidman · Leonardo Ferreira Guilhoto · Victor M. Preciado · George J. Pappas · Paris Perdikaris -
2022 Poster: Probable Domain Generalization via Quantile Risk Minimization »
Cian Eastwood · Alexander Robey · Shashank Singh · Julius von Kügelgen · Hamed Hassani · George J. Pappas · Bernhard Schölkopf -
2022 Poster: Collaborative Linear Bandits with Adversarial Agents: Near-Optimal Regret Bounds »
Aritra Mitra · Arman Adibi · George J. Pappas · Hamed Hassani -
2021 Poster: Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients »
Aritra Mitra · Rayana Jaafar · George J. Pappas · Hamed Hassani -
2021 Poster: Model-Based Domain Generalization »
Alexander Robey · George J. Pappas · Hamed Hassani -
2021 Poster: Adversarial Robustness with Semi-Infinite Constrained Learning »
Alexander Robey · Luiz Chamon · George J. Pappas · Hamed Hassani · Alejandro Ribeiro -
2020 Poster: Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework »
Wanxin Jin · Zhaoran Wang · Zhuoran Yang · Shaoshuai Mou -
2019 Poster: Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks »
Mahyar Fazlyab · Alexander Robey · Hamed Hassani · Manfred Morari · George J. Pappas -
2019 Spotlight: Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks »
Mahyar Fazlyab · Alexander Robey · Hamed Hassani · Manfred Morari · George J. Pappas