Timezone: »
An in-depth scene understanding usually requires recognizing all the objects and their relations in an image, encoded as a scene graph. Most existing approaches for scene graph generation first independently recognize each object and then predict their relations independently. Though these approaches are very efficient, they ignore the dependency between different objects as well as between their relations. In this paper, we propose a principled approach to jointly predict the entire scene graph by fully capturing the dependency between different objects and between their relations. Specifically, we establish a unified conditional random field (CRF) to model the joint distribution of all the objects and their relations in a scene graph. We carefully design the potential functions to enable relational reasoning among different objects according to knowledge graph embedding methods. We further propose an efficient and effective algorithm for inference based on mean-field variational inference, in which we first provide a warm initialization by independently predicting the objects and their relations according to the current model, followed by a few iterations of relational reasoning. Experimental results on both the relationship retrieval and zero-shot relationship retrieval tasks prove the efficiency and efficacy of our proposed approach.
Author Information
Minghao Xu (Shanghai Jiaotong University)
Meng Qu (Mila)
Bingbing Ni (Shanghai Jiao Tong University)
Jian Tang (Mila)
More from the Same Authors
-
2021 Spotlight: Neural Algorithmic Reasoners are Implicit Planners »
Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic -
2021 : Multi-task Learning with Domain Knowledge for Molecular Property Prediction »
Shengchao Liu · Meng Qu · Zuobai Zhang · Jian Tang -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 Workshop: Temporal Graph Learning Workshop »
Reihaneh Rabbany · Jian Tang · Michael Bronstein · Shenyang Huang · Meng Qu · Kellin Pelrine · Jianan Zhao · Farimah Poursafaei · Aarash Feizi -
2022 Poster: RainNet: A Large-Scale Imagery Dataset and Benchmark for Spatial Precipitation Downscaling »
Xuanhong Chen · Kairui Feng · Naiyuan Liu · Bingbing Ni · Yifan Lu · Zhengyan Tong · Ziang Liu -
2021 : AI X Molecule »
Jian Tang -
2021 : Multimodal Single-Cell Data Integration + Q&A »
Daniel Burkhardt · Smita Krishnaswamy · Malte Luecken · Debora Marks · Angela Pisco · Bastian Rieck · Jian Tang · Alexander Tong · Fabian Theis · Guy Wolf -
2021 Poster: Neural Algorithmic Reasoners are Implicit Planners »
Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic -
2021 Poster: How to transfer algorithmic reasoning knowledge to learn new algorithms? »
Louis-Pascal Xhonneux · Andreea-Ioana Deac · Petar Veličković · Jian Tang -
2021 Poster: Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction »
Zhaocheng Zhu · Zuobai Zhang · Louis-Pascal Xhonneux · Jian Tang -
2021 Poster: Predicting Molecular Conformation via Dynamic Graph Score Matching »
Shitong Luo · Chence Shi · Minkai Xu · Jian Tang -
2020 Poster: Graph Policy Network for Transferable Active Learning on Graphs »
Shengding Hu · Zheng Xiong · Meng Qu · Xingdi Yuan · Marc-Alexandre Côté · Zhiyuan Liu · Jian Tang -
2020 Poster: Towards Interpretable Natural Language Understanding with Explanations as Latent Variables »
Wangchunshu Zhou · Jinyi Hu · Hanlin Zhang · Xiaodan Liang · Maosong Sun · Chenyan Xiong · Jian Tang -
2020 Poster: Learning Black-Box Attackers with Transferable Priors and Query Feedback »
Jiancheng YANG · Yangzhou Jiang · Xiaoyang Huang · Bingbing Ni · Chenglong Zhao -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2019 Poster: vGraph: A Generative Model for Joint Community Detection and Node Representation Learning »
Fan-Yun Sun · Meng Qu · Jordan Hoffmann · Chin-Wei Huang · Jian Tang -
2019 Poster: Probabilistic Logic Neural Networks for Reasoning »
Meng Qu · Jian Tang -
2018 Poster: Video Prediction via Selective Sampling »
Jingwei Xu · Bingbing Ni · Xiaokang Yang