Timezone: »
Poster
Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix Factorization
Tian Ye · Simon Du
We study the asymmetric low-rank factorization problem:\[\min_{\mathbf{U} \in \mathbb{R}^{m \times d}, \mathbf{V} \in \mathbb{R}^{n \times d}} \frac{1}{2}\|\mathbf{U}\mathbf{V}^\top -\mathbf{\Sigma}\|_F^2\]where $\mathbf{\Sigma}$ is a given matrix of size $m \times n$ and rank $d$. This is a canonical problem that admits two difficulties in optimization: 1) non-convexity and 2) non-smoothness (due to unbalancedness of $\mathbf{U}$ and $\mathbf{V}$). This is also a prototype for more complex problems such as asymmetric matrix sensing and matrix completion. Despite being non-convex and non-smooth, it has been observed empirically that the randomly initialized gradient descent algorithm can solve this problem in polynomial time. Existing theories to explain this phenomenon all require artificial modifications of the algorithm, such as adding noise in each iteration and adding a balancing regularizer to balance the $\mathbf{U}$ and $\mathbf{V}$.This paper presents the first proof that shows randomly initialized gradient descent converges to a global minimum of the asymmetric low-rank factorization problem with a polynomial rate. For the proof, we develop 1) a new symmetrization technique to capture the magnitudes of the symmetry and asymmetry, and 2) a quantitative perturbation analysis to approximate matrix derivatives. We believe both are useful for other related non-convex problems.
Author Information
Tian Ye (Carnegie Mellon University)
Simon Du (University of Washington)
More from the Same Authors
-
2021 Spotlight: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP »
Zihan Zhang · Jiaqi Yang · Xiangyang Ji · Simon Du -
2021 Poster: Corruption Robust Active Learning »
Yifang Chen · Simon Du · Kevin Jamieson -
2021 Poster: Nearly Horizon-Free Offline Reinforcement Learning »
Tongzheng Ren · Jialian Li · Bo Dai · Simon Du · Sujay Sanghavi -
2018 Poster: How Many Samples are Needed to Estimate a Convolutional Neural Network? »
Simon Du · Yining Wang · Xiyu Zhai · Sivaraman Balakrishnan · Russ Salakhutdinov · Aarti Singh -
2018 Poster: Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced »
Simon Du · Wei Hu · Jason Lee -
2017 Poster: Hypothesis Transfer Learning via Transformation Functions »
Simon Du · Jayanth Koushik · Aarti Singh · Barnabas Poczos -
2017 Poster: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Spotlight: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Poster: On the Power of Truncated SVD for General High-rank Matrix Estimation Problems »
Simon Du · Yining Wang · Aarti Singh -
2016 Poster: Efficient Nonparametric Smoothness Estimation »
Shashank Singh · Simon Du · Barnabas Poczos