`

Timezone: »

 
Poster
Continuous Mean-Covariance Bandits
Yihan Du · Siwei Wang · Zhixuan Fang · Longbo Huang

Thu Dec 09 12:30 AM -- 02:00 AM (PST) @ None #None

Existing risk-aware multi-armed bandit models typically focus on risk measures of individual options such as variance. As a result, they cannot be directly applied to important real-world online decision making problems with correlated options. In this paper, we propose a novel Continuous Mean-Covariance Bandit (CMCB) model to explicitly take into account option correlation. Specifically, in CMCB, there is a learner who sequentially chooses weight vectors on given options and observes random feedback according to the decisions. The agent's objective is to achieve the best trade-off between reward and risk, measured with option covariance. To capture different reward observation scenarios in practice, we consider three feedback settings, i.e., full-information, semi-bandit and full-bandit feedback. We propose novel algorithms with optimal regrets (within logarithmic factors), and provide matching lower bounds to validate their optimalities. The experimental results also demonstrate the superiority of our algorithms. To the best of our knowledge, this is the first work that considers option correlation in risk-aware bandits and explicitly quantifies how arbitrary covariance structures impact the learning performance.The novel analytical techniques we developed for exploiting the estimated covariance to build concentration and bounding the risk of selected actions based on sampling strategy properties can likely find applications in other bandit analysis and be of independent interests.

Author Information

Yihan Du (IIIS, Tsinghua University)
Siwei Wang (IIIS, Tsinghua University)
Zhixuan Fang (Tsinghua University, Tsinghua University)
Longbo Huang (IIIS, Tsinghua Univeristy)

More from the Same Authors