Timezone: »
Poster
Framing RNN as a kernel method: A neural ODE approach
Adeline Fermanian · Pierre Marion · Jean-Philippe Vert · Gérard Biau
Building on the interpretation of a recurrent neural network (RNN) as a continuous-time neural differential equation, we show, under appropriate conditions, that the solution of a RNN can be viewed as a linear function of a specific feature set of the input sequence, known as the signature. This connection allows us to frame a RNN as a kernel method in a suitable reproducing kernel Hilbert space. As a consequence, we obtain theoretical guarantees on generalization and stability for a large class of recurrent networks. Our results are illustrated on simulated datasets.
Author Information
Adeline Fermanian (Mines ParisTech)
Pierre Marion (Sorbonne Université)
Jean-Philippe Vert (Google)
Gérard Biau (University Paris VI)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Framing RNN as a kernel method: A neural ODE approach »
Tue. Dec 7th 08:00 -- 08:15 AM Room
More from the Same Authors
-
2021 Poster: Reverse-Complement Equivariant Networks for DNA Sequences »
Vincent Mallet · Jean-Philippe Vert -
2018 Poster: Relating Leverage Scores and Density using Regularized Christoffel Functions »
Edouard Pauwels · Francis Bach · Jean-Philippe Vert -
2015 : Learning from Rankings »
Jean-Philippe Vert -
2014 Poster: Tight convex relaxations for sparse matrix factorization »
Emile Richard · Guillaume R Obozinski · Jean-Philippe Vert -
2013 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Sara Mostafavi · Oliver Stegle -
2012 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Christina Leslie -
2012 Session: Oral Session 9 »
Jean-Philippe Vert -
2011 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Gunnar Rätsch · Yanjun Qi · Tomer Hertz · Anna Goldenberg · Christina Leslie -
2010 Workshop: Machine Learning in Computational Biology »
Gunnar Rätsch · Jean-Philippe Vert · Tomer Hertz · Yanjun Qi -
2010 Poster: Fast detection of multiple change-points shared by many signals using group LARS »
Jean-Philippe Vert · Kevin Bleakley -
2009 Workshop: Temporal Segmentation: Perspectives from Statistics, Machine Learning, and Signal Processing »
Stephane Canu · Olivier Cappé · Arthur Gretton · Zaid Harchaoui · Alain Rakotomamonjy · Jean-Philippe Vert -
2009 Workshop: Machine Learning in Computational Biology »
Gal Chechik · Tomer Hertz · William S Noble · Yanjun Qi · Jean-Philippe Vert · Alexander Zien -
2009 Mini Symposium: Machine Learning in Computational Biology »
Yanjun Qi · Jean-Philippe Vert · Gal Chechik · Alexander Zien · Tomer Hertz · William S Noble -
2009 Poster: White Functionals for Anomaly Detection in Dynamical Systems »
Marco Cuturi · Jean-Philippe Vert · Alexandre d'Aspremont -
2008 Poster: Clustered Multi-Task Learning: A Convex Formulation »
Laurent Jacob · Francis Bach · Jean-Philippe Vert -
2008 Spotlight: Clustered Multi-Task Learning: A Convex Formulation »
Laurent Jacob · Francis Bach · Jean-Philippe Vert