Timezone: »
The goal of program synthesis from examples is to find a computer program that is consistent with a given set of input-output examples. Most learning-based approaches try to find a program that satisfies all examples at once. Our work, by contrast, considers an approach that breaks the problem into two stages: (a) find programs that satisfy only one example, and (b) leverage these per-example solutions to yield a program that satisfies all examples. We introduce the Cross Aggregator neural network module based on a multi-head attention mechanism that learns to combine the cues present in these per-example solutions to synthesize a global solution. Evaluation across programs of different lengths and under two different experimental settings reveal that when given the same time budget, our technique significantly improves the success rate over PCCoder [Zohar et. al 2018] and other ablation baselines.
Author Information
Disha Shrivastava (Mila, University of Montreal)
Hugo Larochelle (Google Brain)
Daniel Tarlow (Google Research, Brain team)
More from the Same Authors
-
2021 : A Unified Few-Shot Classification Benchmark to Compare Transfer and Meta Learning Approaches »
Vincent Dumoulin · Neil Houlsby · Utku Evci · Xiaohua Zhai · Ross Goroshin · Sylvain Gelly · Hugo Larochelle -
2021 Spotlight: PLUR: A Unifying, Graph-Based View of Program Learning, Understanding, and Repair »
Zimin Chen · Vincent J Hellendoorn · Pascal Lamblin · Petros Maniatis · Pierre-Antoine Manzagol · Daniel Tarlow · Subhodeep Moitra -
2021 Spotlight: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2022 : Teaching Algorithmic Reasoning via In-context Learning »
Hattie Zhou · Azade Nova · aaron courville · Hugo Larochelle · Behnam Neyshabur · Hanie Sedghi -
2023 Poster: SatBird: a Dataset for Bird Species Distribution Modeling using Remote Sensing and Citizen Science Data »
Mélisande Teng · Amna Elmustafa · Benjamin Akera · Hager Radi · Yoshua Bengio · Hugo Larochelle · David Rolnick -
2022 : Teaching Algorithmic Reasoning via In-context Learning »
Hattie Zhou · Azade Nova · aaron courville · Hugo Larochelle · Behnam Neyshabur · Hanie Sedghi -
2021 Workshop: Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) »
Breandan Considine · Disha Shrivastava · David Yu-Tung Hui · Chin-Wei Huang · Shawn Tan · Xujie Si · Prakash Panangaden · Guy Van den Broeck · Daniel Tarlow -
2021 : Invited Talk - Hugo Larochelle »
Hugo Larochelle -
2021 Poster: Structured Denoising Diffusion Models in Discrete State-Spaces »
Jacob Austin · Daniel D. Johnson · Jonathan Ho · Daniel Tarlow · Rianne van den Berg -
2021 Poster: PLUR: A Unifying, Graph-Based View of Program Learning, Understanding, and Repair »
Zimin Chen · Vincent J Hellendoorn · Pascal Lamblin · Petros Maniatis · Pierre-Antoine Manzagol · Daniel Tarlow · Subhodeep Moitra -
2021 Poster: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2020 : Spotlight Session 1 »
Augustus Odena · Maxwell Nye · Disha Shrivastava · Mayank Agarwal · Vincent J Hellendoorn · Charles Sutton -
2020 Poster: Your GAN is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling »
Tong Che · Ruixiang ZHANG · Jascha Sohl-Dickstein · Hugo Larochelle · Liam Paull · Yuan Cao · Yoshua Bengio -
2020 Poster: Learning Graph Structure With A Finite-State Automaton Layer »
Daniel D. Johnson · Hugo Larochelle · Danny Tarlow -
2020 Poster: Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks »
David Bieber · Charles Sutton · Hugo Larochelle · Danny Tarlow -
2020 Spotlight: Learning Graph Structure With A Finite-State Automaton Layer »
Daniel D. Johnson · Hugo Larochelle · Danny Tarlow -
2020 Poster: Curriculum By Smoothing »
Samarth Sinha · Animesh Garg · Hugo Larochelle -
2020 Spotlight: Curriculum By Smoothing »
Samarth Sinha · Animesh Garg · Hugo Larochelle -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2018 : TBA 3 »
Hugo Larochelle -
2017 Workshop: Workshop on Meta-Learning »
Roberto Calandra · Frank Hutter · Hugo Larochelle · Sergey Levine -
2017 Poster: Modulating early visual processing by language »
Harm de Vries · Florian Strub · Jeremie Mary · Hugo Larochelle · Olivier Pietquin · Aaron Courville -
2017 Spotlight: Modulating early visual processing by language »
Harm de Vries · Florian Strub · Jeremie Mary · Hugo Larochelle · Olivier Pietquin · Aaron Courville -
2017 Poster: A Meta-Learning Perspective on Cold-Start Recommendations for Items »
Manasi Vartak · Arvind Thiagarajan · Conrado Miranda · Jeshua Bratman · Hugo Larochelle -
2014 Session: Oral Session 3 »
Hugo Larochelle -
2014 Poster: An Autoencoder Approach to Learning Bilingual Word Representations »
Sarath Chandar · Stanislas Lauly · Hugo Larochelle · Mitesh Khapra · Balaraman Ravindran · Vikas C Raykar · Amrita Saha -
2013 Workshop: Deep Learning »
Yoshua Bengio · Hugo Larochelle · Russ Salakhutdinov · Tomas Mikolov · Matthew D Zeiler · David Mcallester · Nando de Freitas · Josh Tenenbaum · Jian Zhou · Volodymyr Mnih -
2013 Session: Spotlight Session 10 »
Hugo Larochelle -
2013 Session: Spotlight Session 9 »
Hugo Larochelle -
2013 Session: Spotlight Session 8 »
Hugo Larochelle -
2013 Session: Spotlight Session 7 »
Hugo Larochelle -
2013 Session: Spotlight Session 6 »
Hugo Larochelle -
2013 Session: Spotlight Session 5 »
Hugo Larochelle -
2013 Poster: RNADE: The real-valued neural autoregressive density-estimator »
Benigno Uria · Iain Murray · Hugo Larochelle -
2013 Session: Spotlight Session 4 »
Hugo Larochelle -
2013 Session: Spotlight Session 3 »
Hugo Larochelle -
2013 Session: Spotlight Session 2 »
Hugo Larochelle -
2013 Session: Spotlight Session 1 »
Hugo Larochelle -
2012 Poster: A Neural Autoregressive Topic Model »
Hugo Larochelle · Stanislas Lauly -
2012 Poster: Practical Bayesian Optimization of Machine Learning Algorithms »
Jasper Snoek · Hugo Larochelle · Ryan Adams -
2010 Oral: Learning to combine foveal glimpses with a third-order Boltzmann machine »
Hugo Larochelle · Geoffrey E Hinton -
2010 Poster: Learning to combine foveal glimpses with a third-order Boltzmann machine »
Hugo Larochelle · Geoffrey E Hinton -
2006 Poster: Greedy Layer-Wise Training of Deep Networks »
Yoshua Bengio · Pascal Lamblin · Dan Popovici · Hugo Larochelle -
2006 Talk: Greedy Layer-Wise Training of Deep Networks »
Yoshua Bengio · Pascal Lamblin · Dan Popovici · Hugo Larochelle