Timezone: »
Poster
LLC: Accurate, Multi-purpose Learnt Low-dimensional Binary Codes
Aditya Kusupati · Matthew Wallingford · Vivek Ramanujan · Raghav Somani · Jae Sung Park · Krishna Pillutla · Prateek Jain · Sham Kakade · Ali Farhadi
Learning binary representations of instances and classes is a classical problem with several high potential applications. In modern settings, the compression of high-dimensional neural representations to low-dimensional binary codes is a challenging task and often require large bit-codes to be accurate. In this work, we propose a novel method for $\textbf{L}$earning $\textbf{L}$ow-dimensional binary $\textbf{C}$odes $(\textbf{LLC})$ for instances as well as classes. Our method does ${\textit{not}}$ require any side-information, like annotated attributes or label meta-data, and learns extremely low-dimensional binary codes ($\approx 20$ bits for ImageNet-1K). The learnt codes are super-efficient while still ensuring $\textit{nearly optimal}$ classification accuracy for ResNet50 on ImageNet-1K. We demonstrate that the learnt codes capture intrinsically important features in the data, by discovering an intuitive taxonomy over classes. We further quantitatively measure the quality of our codes by applying it to the efficient image retrieval as well as out-of-distribution (OOD) detection problems. For ImageNet-100 retrieval problem, our learnt binary codes outperform $16$ bit HashNet using only $10$ bits and also are as accurate as $10$ dimensional real representations. Finally, our learnt binary codes can perform OOD detection, out-of-the-box, as accurately as a baseline that needs $\approx3000$ samples to tune its threshold, while we require ${\textit{none}}$. Code is open-sourced at https://github.com/RAIVNLab/LLC.
Author Information
Aditya Kusupati (University of Washington)
Matthew Wallingford (University of Washington)
Vivek Ramanujan (Department of Computer Science, University of Washington)
Raghav Somani (University of Washington)
Jae Sung Park (University of Washington)
Krishna Pillutla (University of Washington)
Prateek Jain (Google Research)
Sham Kakade (Harvard University & Microsoft Research)
Ali Farhadi (University of Washington, Allen Institute for Artificial Intelligence)
More from the Same Authors
-
2021 Spotlight: Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems »
Suhas Kowshik · Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2021 Spotlight: Differentially Private Model Personalization »
Prateek Jain · John Rush · Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2021 : Robust fine-tuning of zero-shot models »
Mitchell Wortsman · Gabriel Ilharco · Jong Wook Kim · Mike Li · Hanna Hajishirzi · Ali Farhadi · Hongseok Namkoong · Ludwig Schmidt -
2021 : Gradient flows on graphons: existence, convergence, continuity equations »
Sewoong Oh · Soumik Pal · Raghav Somani · Raghav Tripathi -
2022 : Differentially Private Federated Quantiles with the Distributed Discrete Gaussian Mechanism »
Krishna Pillutla · Yassine Laguel · Jérôme Malick · Zaid Harchaoui -
2022 : MET: Masked Encoding for Tabular Data »
Kushal Majmundar · Sachin Goyal · Praneeth Netrapalli · Prateek Jain -
2022 : Learning an Invertible Output Mapping Can Mitigate Simplicity Bias in Neural Networks »
Sravanti Addepalli · Anshul Nasery · Venkatesh Babu R · Praneeth Netrapalli · Prateek Jain -
2022 : Tackling Distribution Shifts in Federated Learning with Superquantile Aggregation »
Krishna Pillutla · Yassine Laguel · Jérôme Malick · Zaid Harchaoui -
2022 : Matryoshka Representations for Adaptive Deployment »
Aniket Rege · Aditya Kusupati · Gantavya Bhatt · Matthew Wallingford · Aditya Sinha · Vivek Ramanujan · William Howard-Snyder · Kaifeng Chen · Sham Kakade · Prateek Jain · Ali Farhadi -
2022 Spotlight: Risk Bounds of Multi-Pass SGD for Least Squares in the Interpolation Regime »
Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 : Tackling Distribution Shifts in Federated Learning with Superquantile Aggregation »
Krishna Pillutla · Yassine Laguel · Jérôme Malick · Zaid Harchaoui -
2022 Poster: Patching open-vocabulary models by interpolating weights »
Gabriel Ilharco · Mitchell Wortsman · Samir Yitzhak Gadre · Shuran Song · Hannaneh Hajishirzi · Simon Kornblith · Ali Farhadi · Ludwig Schmidt -
2022 Poster: DP-PCA: Statistically Optimal and Differentially Private PCA »
Xiyang Liu · Weihao Kong · Prateek Jain · Sewoong Oh -
2022 Poster: S3GC: Scalable Self-Supervised Graph Clustering »
Fnu Devvrit · Aditya Sinha · Inderjit Dhillon · Prateek Jain -
2022 Poster: Reproducibility in Optimization: Theoretical Framework and Limits »
Kwangjun Ahn · Prateek Jain · Ziwei Ji · Satyen Kale · Praneeth Netrapalli · Gil I Shamir -
2022 Poster: Matryoshka Representation Learning »
Aditya Kusupati · Gantavya Bhatt · Aniket Rege · Matthew Wallingford · Aditya Sinha · Vivek Ramanujan · William Howard-Snyder · Kaifeng Chen · Sham Kakade · Prateek Jain · Ali Farhadi -
2021 : Invited Speaker Panel »
Sham Kakade · Minmin Chen · Philip Thomas · Angela Schoellig · Barbara Engelhardt · Doina Precup · George Tucker -
2021 : Q&A for Sham Kakade »
Sham Kakade -
2021 : Generalization theory in Offline RL »
Sham Kakade -
2021 Oral: MERLOT: Multimodal Neural Script Knowledge Models »
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi -
2021 Poster: Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals »
Lang Liu · Krishna Pillutla · Sean Welleck · Sewoong Oh · Yejin Choi · Zaid Harchaoui -
2021 Poster: The Benefits of Implicit Regularization from SGD in Least Squares Problems »
Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Dean Foster · Sham Kakade -
2021 Poster: Robust and differentially private mean estimation »
Xiyang Liu · Weihao Kong · Sham Kakade · Sewoong Oh -
2021 Poster: Differentially Private Model Personalization »
Prateek Jain · John Rush · Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2021 Poster: An Exponential Lower Bound for Linearly Realizable MDP with Constant Suboptimality Gap »
Yuanhao Wang · Ruosong Wang · Sham Kakade -
2021 Poster: MERLOT: Multimodal Neural Script Knowledge Models »
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi -
2021 Poster: Streaming Linear System Identification with Reverse Experience Replay »
Suhas Kowshik · Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2021 Poster: Going Beyond Linear RL: Sample Efficient Neural Function Approximation »
Baihe Huang · Kaixuan Huang · Sham Kakade · Jason Lee · Qi Lei · Runzhe Wang · Jiaqi Yang -
2021 Poster: Gone Fishing: Neural Active Learning with Fisher Embeddings »
Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Sham Kakade -
2021 Poster: Do Input Gradients Highlight Discriminative Features? »
Harshay Shah · Prateek Jain · Praneeth Netrapalli -
2021 Poster: Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems »
Suhas Kowshik · Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2021 Poster: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2021 Poster: Optimal Gradient-based Algorithms for Non-concave Bandit Optimization »
Baihe Huang · Kaixuan Huang · Sham Kakade · Jason Lee · Qi Lei · Runzhe Wang · Jiaqi Yang -
2021 Poster: Statistically and Computationally Efficient Linear Meta-representation Learning »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2021 Oral: An Exponential Lower Bound for Linearly Realizable MDP with Constant Suboptimality Gap »
Yuanhao Wang · Ruosong Wang · Sham Kakade -
2021 Oral: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2020 Poster: Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2020 Spotlight: Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2020 Tutorial: (Track3) Policy Optimization in Reinforcement Learning Q&A »
Sham M Kakade · Martha White · Nicolas Le Roux -
2020 Poster: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Oindrila Saha · Aditya Kusupati · Harsha Vardhan Simhadri · Manik Varma · Prateek Jain -
2020 Poster: Robust Meta-learning for Mixed Linear Regression with Small Batches »
Weihao Kong · Raghav Somani · Sham Kakade · Sewoong Oh -
2020 Spotlight: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Oindrila Saha · Aditya Kusupati · Harsha Vardhan Simhadri · Manik Varma · Prateek Jain -
2020 Poster: The Pitfalls of Simplicity Bias in Neural Networks »
Harshay Shah · Kaustav Tamuly · Aditi Raghunathan · Prateek Jain · Praneeth Netrapalli -
2020 Poster: Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms »
Dheeraj Nagaraj · Xian Wu · Guy Bresler · Prateek Jain · Praneeth Netrapalli -
2020 Spotlight: Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms »
Dheeraj Nagaraj · Xian Wu · Guy Bresler · Prateek Jain · Praneeth Netrapalli -
2020 Poster: Is Long Horizon RL More Difficult Than Short Horizon RL? »
Ruosong Wang · Simon Du · Lin Yang · Sham Kakade -
2020 Poster: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Poster: PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning »
Alekh Agarwal · Mikael Henaff · Sham Kakade · Wen Sun -
2020 Poster: Sample-Efficient Reinforcement Learning of Undercomplete POMDPs »
Chi Jin · Sham Kakade · Akshay Krishnamurthy · Qinghua Liu -
2020 Spotlight: Sample-Efficient Reinforcement Learning of Undercomplete POMDPs »
Chi Jin · Sham Kakade · Akshay Krishnamurthy · Qinghua Liu -
2020 Oral: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Poster: Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal Sample Complexity »
Kaiqing Zhang · Sham Kakade · Tamer Basar · Lin Yang -
2020 Poster: Information Theoretic Regret Bounds for Online Nonlinear Control »
Sham Kakade · Akshay Krishnamurthy · Kendall Lowrey · Motoya Ohnishi · Wen Sun -
2020 Spotlight: Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal Sample Complexity »
Kaiqing Zhang · Sham Kakade · Tamer Basar · Lin Yang -
2020 Tutorial: (Track3) Policy Optimization in Reinforcement Learning »
Sham M Kakade · Martha White · Nicolas Le Roux -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 : The Provable Effectiveness of Policy Gradient Methods in Reinforcement Learning »
Sham Kakade -
2019 Poster: Defending Against Neural Fake News »
Rowan Zellers · Ari Holtzman · Hannah Rashkin · Yonatan Bisk · Ali Farhadi · Franziska Roesner · Yejin Choi -
2019 Poster: The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning Rate Procedure For Least Squares »
Rong Ge · Sham Kakade · Rahul Kidambi · Praneeth Netrapalli -
2019 Poster: Meta-Learning with Implicit Gradients »
Aravind Rajeswaran · Chelsea Finn · Sham Kakade · Sergey Levine -
2019 Poster: Discovering Neural Wirings »
Mitchell Wortsman · Ali Farhadi · Mohammad Rastegari -
2018 : Coffee break + posters 2 »
Jan Kremer · Erik McDermott · Brandon Carter · Albert Zeyer · Andreas Krug · Paul Pu Liang · Katherine Lee · Dominika Basaj · Abelino Jimenez · Lisa Fan · Gautam Bhattacharya · Tzeviya S Fuchs · David Gifford · Loren Lugosch · Orhan Firat · Benjamin Baer · JAHANGIR ALAM · Jamin Shin · Mirco Ravanelli · Paul Smolensky · Zining Zhu · Hamid Eghbal-zadeh · Skyler Seto · Imran Sheikh · Joao Felipe Santos · Yonatan Belinkov · Nadir Durrani · Oiwi Parker Jones · Shuai Tang · André Merboldt · Titouan Parcollet · Wei-Ning Hsu · Krishna Pillutla · Ehsan Hosseini-Asl · Monica Dinculescu · Alexander Amini · Ying Zhang · Taoli Cheng · Alain Tapp -
2018 : Coffee break + posters 1 »
Samuel Myer · Wei-Ning Hsu · Jialu Li · Monica Dinculescu · Lea Schönherr · Ehsan Hosseini-Asl · Skyler Seto · Oiwi Parker Jones · Imran Sheikh · Thomas Manzini · Yonatan Belinkov · Nadir Durrani · Alexander Amini · Johanna Hansen · Gabi Shalev · Jamin Shin · Paul Smolensky · Lisa Fan · Zining Zhu · Hamid Eghbal-zadeh · Benjamin Baer · Abelino Jimenez · Joao Felipe Santos · Jan Kremer · Erik McDermott · Andreas Krug · Tzeviya S Fuchs · Shuai Tang · Brandon Carter · David Gifford · Albert Zeyer · André Merboldt · Krishna Pillutla · Katherine Lee · Titouan Parcollet · Orhan Firat · Gautam Bhattacharya · JAHANGIR ALAM · Mirco Ravanelli -
2018 Poster: A Smoother Way to Train Structured Prediction Models »
Krishna Pillutla · Vincent Roulet · Sham Kakade · Zaid Harchaoui -
2018 Poster: Provably Correct Automatic Sub-Differentiation for Qualified Programs »
Sham Kakade · Jason Lee -
2017 Poster: Learning Overcomplete HMMs »
Vatsal Sharan · Sham Kakade · Percy Liang · Gregory Valiant -
2017 Poster: Towards Generalization and Simplicity in Continuous Control »
Aravind Rajeswaran · Kendall Lowrey · Emanuel Todorov · Sham Kakade -
2016 Poster: Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent »
Chi Jin · Sham Kakade · Praneeth Netrapalli -
2015 Poster: Convergence Rates of Active Learning for Maximum Likelihood Estimation »
Kamalika Chaudhuri · Sham Kakade · Praneeth Netrapalli · Sujay Sanghavi -
2015 Poster: Super-Resolution Off the Grid »
Qingqing Huang · Sham Kakade -
2015 Spotlight: Super-Resolution Off the Grid »
Qingqing Huang · Sham Kakade -
2013 Poster: When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity »
Anima Anandkumar · Daniel Hsu · Majid Janzamin · Sham M Kakade -
2012 Poster: Learning Mixtures of Tree Graphical Models »
Anima Anandkumar · Daniel Hsu · Furong Huang · Sham M Kakade -
2012 Poster: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Poster: Identifiability and Unmixing of Latent Parse Trees »
Percy Liang · Sham M Kakade · Daniel Hsu -
2012 Spotlight: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2011 Poster: Stochastic convex optimization with bandit feedback »
Alekh Agarwal · Dean P Foster · Daniel Hsu · Sham M Kakade · Sasha Rakhlin -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2011 Poster: Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression »
Sham M Kakade · Adam Kalai · Varun Kanade · Ohad Shamir -
2010 Spotlight: Learning from Logged Implicit Exploration Data »
Alex Strehl · Lihong Li · John Langford · Sham M Kakade -
2010 Poster: Learning from Logged Implicit Exploration Data »
Alexander L Strehl · John Langford · Lihong Li · Sham M Kakade -
2009 Poster: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Oral: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2008 Poster: Mind the Duality Gap: Logarithmic regret algorithms for online optimization »
Shai Shalev-Shwartz · Sham M Kakade -
2008 Poster: On the Generalization Ability of Online Strongly Convex Programming Algorithms »
Sham M Kakade · Ambuj Tewari -
2008 Spotlight: On the Generalization Ability of Online Strongly Convex Programming Algorithms »
Sham M Kakade · Ambuj Tewari -
2008 Spotlight: Mind the Duality Gap: Logarithmic regret algorithms for online optimization »
Shai Shalev-Shwartz · Sham M Kakade -
2008 Poster: On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization »
Sham M Kakade · Karthik Sridharan · Ambuj Tewari -
2007 Oral: The Price of Bandit Information for Online Optimization »
Varsha Dani · Thomas P Hayes · Sham M Kakade -
2007 Poster: The Price of Bandit Information for Online Optimization »
Varsha Dani · Thomas P Hayes · Sham M Kakade