`

Timezone: »

 
Poster
Luna: Linear Unified Nested Attention
Xuezhe Ma · Xiang Kong · Sinong Wang · Chunting Zhou · Jonathan May · Hao Ma · Luke Zettlemoyer

Fri Dec 10 08:30 AM -- 10:00 AM (PST) @

The quadratic computational and memory complexities of the Transformer's attention mechanism have limited its scalability for modeling long sequences. In this paper, we propose Luna, a linear unified nested attention mechanism that approximates softmax attention with two nested linear attention functions, yielding only linear (as opposed to quadratic) time and space complexity. Specifically, with the first attention function, Luna packs the input sequence into a sequence of fixed length. Then, the packed sequence is unpacked using the second attention function. As compared to a more traditional attention mechanism, Luna introduces an additional sequence with a fixed length as input and an additional corresponding output, which allows Luna to perform attention operation linearly, while also storing adequate contextual information. We perform extensive evaluations on three benchmarks of sequence modeling tasks: long-context sequence modelling, neural machine translation and masked language modeling for large-scale pretraining. Competitive or even better experimental results demonstrate both the effectiveness and efficiency of Luna compared to a variety of strong baseline methods including the full-rank attention and other efficient sparse and dense attention methods.

Author Information

Xuezhe Ma (University of Southern California)
Xiang Kong (Carnegie Mellon University)
Sinong Wang (Facebook AI)
Chunting Zhou (Language Technologies Institute, Carnegie Mellon University)
Jonathan May (University of Southern California)
Hao Ma (Facebook AI)
Luke Zettlemoyer (University of Washington and Facebook)

More from the Same Authors