Timezone: »
We propose a novel Frank-Wolfe (FW) procedure for the optimization of infinite-dimensional functionals of probability measures - a task which arises naturally in a wide range of areas including statistical learning (e.g. variational inference) and artificial intelligence (e.g. generative adversarial networks). Our FW procedure takes advantage of Wasserstein gradient flows and strong duality results recently developed in Distributionally Robust Optimization so that gradient steps (in the Wasserstein space) can be efficiently computed using finite-dimensional, convex optimization methods. We show how to choose the step sizes in order to guarantee exponentially fast iteration convergence, under mild assumptions on the functional to optimize. We apply our algorithm to a range of functionals arising from applications in nonparametric estimation.
Author Information
Carson Kent (Stanford University)
Jiajin Li (The Chinese University of Hong Kong)
Jose Blanchet (Stanford University)
Peter W Glynn (Stanford University)
Peter W. Glynn is the Thomas Ford Professor in the Department of Management Science and Engineering (MS&E) at Stanford University, and also holds a courtesy appointment in the Department of Electrical Engineering. He received his Ph.D in Operations Research from Stanford University in 1982. He then joined the faculty of the University of Wisconsin at Madison, where he held a joint appointment between the Industrial Engineering Department and Mathematics Research Center, and courtesy appointments in Computer Science and Mathematics. In 1987, he returned to Stanford, where he joined the Department of Operations Research. He was Director of Stanford's Institute for Computational and Mathematical Engineering from 2006 until 2010 and served as Chair of MS&E from 2011 through 2015. He is a Fellow of INFORMS and a Fellow of the Institute of Mathematical Statistics, and was an IMS Medallion Lecturer in 1995 and INFORMS Markov Lecturer in 2014. He was co-winner of the Outstanding Publication Awards from the INFORMS Simulation Society in 1993, 2008, and 2016, was a co-winner of the Best (Biannual) Publication Award from the INFORMS Applied Probability Society in 2009, and was the co-winner of the John von Neumann Theory Prize from INFORMS in 2010. In 2012, he was elected to the National Academy of Engineering. He was Founding Editor-in-Chief of Stochastic Systems and is currently Editor-in-Chief of Journal of Applied Probability and Advances in Applied Probability. His research interests lie in simulation, computational probability, queueing theory, statistical inference for stochastic processes, and stochastic modeling.
More from the Same Authors
-
2022 : Minimax Optimal Kernel Operator Learning via Multilevel Training »
Jikai Jin · Yiping Lu · Jose Blanchet · Lexing Ying -
2022 : Synthetic Principle Component Design: Fast Covariate Balancing with Synthetic Controls »
Yiping Lu · Jiajin Li · Lexing Ying · Jose Blanchet -
2022 Poster: Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent »
Yiping Lu · Jose Blanchet · Lexing Ying -
2022 Poster: Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints »
Jiajin Li · Sirui Lin · Jose Blanchet · Viet Anh Nguyen -
2021 : Statistical Numerical PDE : Fast Rate, Neural Scaling Law and When it’s Optimal »
Yiping Lu · Haoxuan Chen · Jianfeng Lu · Lexing Ying · Jose Blanchet -
2021 Poster: Deconvolutional Networks on Graph Data »
Jia Li · Jiajin Li · Yang Liu · Jianwei Yu · Yueting Li · Hong Cheng -
2021 Poster: Adversarial Regression with Doubly Non-negative Weighting Matrices »
Tam Le · Truyen Nguyen · Makoto Yamada · Jose Blanchet · Viet Anh Nguyen -
2020 Poster: Distributionally Robust Parametric Maximum Likelihood Estimation »
Viet Anh Nguyen · Xuhui Zhang · Jose Blanchet · Angelos Georghiou -
2020 Poster: Dirichlet Graph Variational Autoencoder »
Jia Li · Jianwei Yu · Jiajin Li · Honglei Zhang · Kangfei Zhao · Yu Rong · Hong Cheng · Junzhou Huang -
2020 Poster: Adaptive Experimental Design with Temporal Interference: A Maximum Likelihood Approach »
Peter W Glynn · Ramesh Johari · Mohammad Rasouli -
2020 Poster: Fast Epigraphical Projection-based Incremental Algorithms for Wasserstein Distributionally Robust Support Vector Machine »
Jiajin Li · Caihua Chen · Anthony Man-Cho So -
2020 Poster: Quantifying the Empirical Wasserstein Distance to a Set of Measures: Beating the Curse of Dimensionality »
Nian Si · Jose Blanchet · Soumyadip Ghosh · Mark Squillante -
2020 Spotlight: Quantifying the Empirical Wasserstein Distance to a Set of Measures: Beating the Curse of Dimensionality »
Nian Si · Jose Blanchet · Soumyadip Ghosh · Mark Squillante -
2020 Poster: Distributionally Robust Local Non-parametric Conditional Estimation »
Viet Anh Nguyen · Fan Zhang · Jose Blanchet · Erick Delage · Yinyu Ye -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Learning in Generalized Linear Contextual Bandits with Stochastic Delays »
Zhengyuan Zhou · Renyuan Xu · Jose Blanchet -
2019 Spotlight: Learning in Generalized Linear Contextual Bandits with Stochastic Delays »
Zhengyuan Zhou · Renyuan Xu · Jose Blanchet -
2019 Poster: A First-Order Algorithmic Framework for Wasserstein Distributionally Robust Logistic Regression »
Jiajin Li · SEN HUANG · Anthony Man-Cho So -
2019 Poster: Online EXP3 Learning in Adversarial Bandits with Delayed Feedback »
Ilai Bistritz · Zhengyuan Zhou · Xi Chen · Nicholas Bambos · Jose Blanchet -
2019 Poster: Multivariate Distributionally Robust Convex Regression under Absolute Error Loss »
Jose Blanchet · Peter W Glynn · Jun Yan · Zhengqing Zhou -
2019 Poster: Semi-Parametric Dynamic Contextual Pricing »
Virag Shah · Ramesh Johari · Jose Blanchet -
2018 Poster: Learning in Games with Lossy Feedback »
Zhengyuan Zhou · Panayotis Mertikopoulos · Susan Athey · Nicholas Bambos · Peter W Glynn · Yinyu Ye -
2017 Poster: Countering Feedback Delays in Multi-Agent Learning »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter W Glynn · Claire Tomlin -
2017 Poster: Stochastic Mirror Descent in Variationally Coherent Optimization Problems »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Stephen Boyd · Peter W Glynn