`

Timezone: »

 
Poster
Explaining heterogeneity in medial entorhinal cortex with task-driven neural networks
Aran Nayebi · Alexander Attinger · Malcolm Campbell · Kiah Hardcastle · Isabel Low · Caitlin S Mallory · Gabriel Mel · Ben Sorscher · Alex H Williams · Surya Ganguli · Lisa Giocomo · Dan Yamins

Thu Dec 09 08:30 AM -- 10:00 AM (PST) @ None #None

Medial entorhinal cortex (MEC) supports a wide range of navigational and memory related behaviors.Well-known experimental results have revealed specialized cell types in MEC --- e.g. grid, border, and head-direction cells --- whose highly stereotypical response profiles are suggestive of the role they might play in supporting MEC functionality. However, the majority of MEC neurons do not exhibit stereotypical firing patterns.How should the response profiles of these more "heterogeneous" cells be described, and how do they contribute to behavior?In this work, we took a computational approach to addressing these questions.We first performed a statistical analysis that shows that heterogeneous MEC cells are just as reliable in their response patterns as the more stereotypical cell types, suggesting that they have a coherent functional role.Next, we evaluated a spectrum of candidate models in terms of their ability to describe the response profiles of both stereotypical and heterogeneous MEC cells.We found that recently developed task-optimized neural network models are substantially better than traditional grid cell-centric models at matching most MEC neuronal response profiles --- including those of grid cells themselves --- despite not being explicitly trained for this purpose.Specific choices of network architecture (such as gated nonlinearities and an explicit intermediate place cell representation) have an important effect on the ability of the model to generalize to novel scenarios, with the best of these models closely approaching the noise ceiling of the data itself.We then performed in silico experiments on this model to address questions involving the relative functional relevance of various cell types, finding that heterogeneous cells are likely to be just as involved in downstream functional outcomes (such as path integration) as grid and border cells.Finally, inspired by recent data showing that, going beyond their spatial response selectivity, MEC cells are also responsive to non-spatial rewards, we introduce a new MEC model that performs reward-modulated path integration.We find that this unified model matches neural recordings across all variable-reward conditions.Taken together, our results point toward a conceptually principled goal-driven modeling approach for moving future experimental and computational efforts beyond overly-simplistic single-cell stereotypes.

Author Information

Aran Nayebi (Stanford University)
Alexander Attinger (Stanford University)
Malcolm Campbell
Kiah Hardcastle
Isabel Low
Caitlin S Mallory (Stanford)
Gabriel Mel (Stanford University)
Ben Sorscher (Stanford University)
Alex H Williams (Stanford University)
Surya Ganguli
Lisa Giocomo (Stanford University)
Dan Yamins

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
    Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins
  • 2021 : Physion: Evaluating Physical Prediction from Vision in Humans and Machines »
    Daniel Bear · Elias Wang · Damian Mrowca · Felix Binder · Hsiao-Yu Tung · Pramod RT · Cameron Holdaway · Sirui Tao · Kevin Smith · Fan-Yun Sun · Fei-Fei Li · Nancy Kanwisher · Josh Tenenbaum · Dan Yamins · Judith Fan
  • 2021 Poster: Generalized Shape Metrics on Neural Representations »
    Alex H Williams · Erin Kunz · Simon Kornblith · Scott Linderman
  • 2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
    Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins
  • 2020 Poster: Identifying Learning Rules From Neural Network Observables »
    Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins
  • 2020 Poster: Estimating Fluctuations in Neural Representations of Uncertain Environments »
    Sahand Farhoodi · Mark Plitt · Lisa Giocomo · Uri Eden
  • 2020 Spotlight: Identifying Learning Rules From Neural Network Observables »
    Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins
  • 2020 Poster: Learning Physical Graph Representations from Visual Scenes »
    Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins
  • 2020 Oral: Learning Physical Graph Representations from Visual Scenes »
    Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins
  • 2019 : Poster Session »
    Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar
  • 2019 Poster: Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs »
    Jonas Kubilius · Martin Schrimpf · Kohitij Kar · Rishi Rajalingham · Ha Hong · Najib Majaj · Elias Issa · Pouya Bashivan · Jonathan Prescott-Roy · Kailyn Schmidt · Aran Nayebi · Daniel Bear · Daniel Yamins · James J DiCarlo
  • 2019 Poster: A unified theory for the origin of grid cells through the lens of pattern formation »
    Ben Sorscher · Gabriel Mel · Surya Ganguli · Samuel Ocko
  • 2019 Spotlight: A unified theory for the origin of grid cells through the lens of pattern formation »
    Ben Sorscher · Gabriel Mel · Surya Ganguli · Samuel Ocko
  • 2019 Oral: Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs »
    Jonas Kubilius · Martin Schrimpf · Ha Hong · Najib Majaj · Rishi Rajalingham · Elias Issa · Kohitij Kar · Pouya Bashivan · Jonathan Prescott-Roy · Kailyn Schmidt · Aran Nayebi · Daniel Bear · Daniel Yamins · James J DiCarlo
  • 2019 Poster: From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction »
    Hidenori Tanaka · Aran Nayebi · Niru Maheswaranathan · Lane McIntosh · Stephen Baccus · Surya Ganguli
  • 2018 Poster: Task-Driven Convolutional Recurrent Models of the Visual System »
    Aran Nayebi · Daniel Bear · Jonas Kubilius · Kohitij Kar · Surya Ganguli · David Sussillo · James J DiCarlo · Daniel Yamins
  • 2016 Poster: Deep Learning Models of the Retinal Response to Natural Scenes »
    Lane McIntosh · Niru Maheswaranathan · Aran Nayebi · Surya Ganguli · Stephen Baccus