Timezone: »
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring semantic knowledge from seen classes to unseen ones. Typically, to guarantee desirable knowledge transfer, a common (latent) space is adopted for associating the visual and semantic domains in ZSL. However, existing common space learning methods align the semantic and visual domains by merely mitigating distribution disagreement through one-step adaptation. This strategy is usually ineffective due to the heterogeneous nature of the feature representations in the two domains, which intrinsically contain both distribution and structure variations. To address this and advance ZSL, we propose a novel hierarchical semantic-visual adaptation (HSVA) framework. Specifically, HSVA aligns the semantic and visual domains by adopting a hierarchical two-step adaptation, i.e., structure adaptation and distribution adaptation. In the structure adaptation step, we take two task-specific encoders to encode the source data (visual domain) and the target data (semantic domain) into a structure-aligned common space. To this end, a supervised adversarial discrepancy (SAD) module is proposed to adversarially minimize the discrepancy between the predictions of two task-specific classifiers, thus making the visual and semantic feature manifolds more closely aligned. In the distribution adaptation step, we directly minimize the Wasserstein distance between the latent multivariate Gaussian distributions to align the visual and semantic distributions using a common encoder. Finally, the structure and distribution adaptation are derived in a unified framework under two partially-aligned variational autoencoders. Extensive experiments on four benchmark datasets demonstrate that HSVA achieves superior performance on both conventional and generalized ZSL. The code is available at \url{https://github.com/shiming-chen/HSVA}.
Author Information
Shiming Chen (Huazhong University of Science and Technology)
Guosen Xie (inception institute of artificial intelligence (iiai))
Yang Liu (NCEPU)
Qinmu Peng (Huazhong University of Science and Technology)
Baigui Sun (Alibaba Group)
Hao Li (alibaba group)
Xinge You (Huazhong University of Science and Technology)
Ling Shao (Inception Institute of Artificial Intelligence)
More from the Same Authors
-
2022 Poster: VTC-LFC: Vision Transformer Compression with Low-Frequency Components »
Zhenyu Wang · Hao Luo · Pichao WANG · Feng Ding · Fan Wang · Hao Li -
2022 : An Empirical Study on Distribution Shift Robustness From the Perspective of Pre-Training and Data Augmentation »
Ziquan Liu · Yi Xu · Yuanhong Xu · Qi Qian · Hao Li · Rong Jin · Xiangyang Ji · Antoni Chan -
2022 Spotlight: Lightning Talks 6B-3 »
Lingfeng Yang · Yao Lai · Zizheng Pan · Zhenyu Wang · Weicong Liang · Chuanyang Zheng · Jian-Wei Zhang · Peng Jin · Jing Liu · Xiuying Wei · Yao Mu · Xiang Li · YUHUI YUAN · Zizheng Pan · Yifan Sun · Yunchen Zhang · Jianfei Cai · Hao Luo · zheyang li · Jinfa Huang · Haoyu He · Yi Yang · Ping Luo · Fenglin Liu · Henghui Ding · Borui Zhao · Xiangguo Zhang · Kai Zhang · Pichao WANG · Bohan Zhuang · Wei Chen · Ruihao Gong · Zhi Yang · Xian Wu · Feng Ding · Jianfei Cai · Xiao Luo · Renjie Song · Weihong Lin · Jian Yang · Wenming Tan · Bohan Zhuang · Shanghang Zhang · Shen Ge · Fan Wang · Qi Zhang · Guoli Song · Jun Xiao · Hao Li · Ding Jia · David Clifton · Ye Ren · Fengwei Yu · Zheng Zhang · Jie Chen · Shiliang Pu · Xianglong Liu · Chao Zhang · Han Hu -
2022 Spotlight: VTC-LFC: Vision Transformer Compression with Low-Frequency Components »
Zhenyu Wang · Hao Luo · Pichao WANG · Feng Ding · Fan Wang · Hao Li -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Improved Fine-Tuning by Better Leveraging Pre-Training Data »
Ziquan Liu · Yi Xu · Yuanhong Xu · Qi Qian · Hao Li · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Poster: Entropy-Driven Mixed-Precision Quantization for Deep Network Design »
Zhenhong Sun · Ce Ge · Junyan Wang · Ming Lin · Hesen Chen · Hao Li · Xiuyu Sun -
2022 Poster: PolarMix: A General Data Augmentation Technique for LiDAR Point Clouds »
Aoran Xiao · Jiaxing Huang · Dayan Guan · Kaiwen Cui · Shijian Lu · Ling Shao -
2022 Poster: Improved Fine-Tuning by Better Leveraging Pre-Training Data »
Ziquan Liu · Yi Xu · Yuanhong Xu · Qi Qian · Hao Li · Xiangyang Ji · Antoni Chan · Rong Jin -
2021 Poster: You Never Cluster Alone »
Yuming Shen · Ziyi Shen · Menghan Wang · Jie Qin · Philip Torr · Ling Shao -
2021 Poster: TransMatcher: Deep Image Matching Through Transformers for Generalizable Person Re-identification »
Shengcai Liao · Ling Shao -
2021 Poster: Variational Multi-Task Learning with Gumbel-Softmax Priors »
Jiayi Shen · Xiantong Zhen · Marcel Worring · Ling Shao -
2020 Poster: Learning to Learn Variational Semantic Memory »
Xiantong Zhen · Yingjun Du · Huan Xiong · Qiang Qiu · Cees Snoek · Ling Shao -
2020 Poster: Human Parsing Based Texture Transfer from Single Image to 3D Human via Cross-View Consistency »
Fang Zhao · Shengcai Liao · Kaihao Zhang · Ling Shao -
2019 Poster: Two Generator Game: Learning to Sample via Linear Goodness-of-Fit Test »
Lizhong Ding · Mengyang Yu · Li Liu · Fan Zhu · Yong Liu · Yu Li · Ling Shao