Timezone: »
Poster
On Empirical Risk Minimization with Dependent and Heavy-Tailed Data
Abhishek Roy · Krishnakumar Balasubramanian · Murat Erdogdu
In this work, we establish risk bounds for Empirical Risk Minimization (ERM) with both dependent and heavy-tailed data-generating processes. We do so by extending the seminal works~\cite{pmlr-v35-mendelson14, mendelson2018learning} on the analysis of ERM with heavy-tailed but independent and identically distributed observations, to the strictly stationary exponentially $\beta$-mixing case. We allow for the interaction between the noise and inputs to be even polynomially heavy-tailed, which covers a significantly large class of heavy-tailed models beyond what is analyzed in the learning theory literature. We illustrate our theoretical results by obtaining rates of convergence for high-dimensional linear regression with dependent and heavy-tailed data.
Author Information
Abhishek Roy (University of California, Davis)
Krishnakumar Balasubramanian (University of California, Davis)
Murat Erdogdu (University of Toronto)
More from the Same Authors
-
2021 Spotlight: Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms »
Alexander Camuto · George Deligiannidis · Murat Erdogdu · Mert Gurbuzbalaban · Umut Simsekli · Lingjiong Zhu -
2022 : Neural Networks Efficiently Learn Low-Dimensional Representations with SGD »
Alireza Mousavi-Hosseini · Sejun Park · Manuela Girotti · Ioannis Mitliagkas · Murat Erdogdu -
2022 Poster: High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation »
Jimmy Ba · Murat Erdogdu · Taiji Suzuki · Zhichao Wang · Denny Wu · Greg Yang -
2022 Poster: Generalization Bounds for Stochastic Gradient Descent via Localized $\varepsilon$-Covers »
Sejun Park · Umut Simsekli · Murat Erdogdu -
2022 Poster: A Projection-free Algorithm for Constrained Stochastic Multi-level Composition Optimization »
Tesi Xiao · Krishnakumar Balasubramanian · Saeed Ghadimi -
2022 Poster: Constrained Stochastic Nonconvex Optimization with State-dependent Markov Data »
Abhishek Roy · Krishnakumar Balasubramanian · Saeed Ghadimi -
2021 Poster: Heavy Tails in SGD and Compressibility of Overparametrized Neural Networks »
Melih Barsbey · Milad Sefidgaran · Murat Erdogdu · Gaël Richard · Umut Simsekli -
2021 Poster: An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias »
Lu Yu · Krishnakumar Balasubramanian · Stanislav Volgushev · Murat Erdogdu -
2021 Poster: Manipulating SGD with Data Ordering Attacks »
I Shumailov · Zakhar Shumaylov · Dmitry Kazhdan · Yiren Zhao · Nicolas Papernot · Murat Erdogdu · Ross J Anderson -
2021 Poster: Convergence Rates of Stochastic Gradient Descent under Infinite Noise Variance »
Hongjian Wang · Mert Gurbuzbalaban · Lingjiong Zhu · Umut Simsekli · Murat Erdogdu -
2021 Poster: Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms »
Alexander Camuto · George Deligiannidis · Murat Erdogdu · Mert Gurbuzbalaban · Umut Simsekli · Lingjiong Zhu -
2020 Poster: Escaping Saddle-Point Faster under Interpolation-like Conditions »
Abhishek Roy · Krishnakumar Balasubramanian · Saeed Ghadimi · Prasant Mohapatra -
2020 Poster: On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint Sampling Method »
Ye He · Krishnakumar Balasubramanian · Murat Erdogdu -
2020 Poster: Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks »
Umut Simsekli · Ozan Sener · George Deligiannidis · Murat Erdogdu -
2020 Spotlight: Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks »
Umut Simsekli · Ozan Sener · George Deligiannidis · Murat Erdogdu -
2019 Poster: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond »
Xuechen (Chen) Li · Denny Wu · Lester Mackey · Murat Erdogdu -
2019 Spotlight: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond »
Xuechen (Chen) Li · Denny Wu · Lester Mackey · Murat Erdogdu -
2018 Poster: Zeroth-order (Non)-Convex Stochastic Optimization via Conditional Gradient and Gradient Updates »
Krishnakumar Balasubramanian · Saeed Ghadimi -
2018 Poster: Global Non-convex Optimization with Discretized Diffusions »
Murat Erdogdu · Lester Mackey · Ohad Shamir -
2017 Poster: Robust Estimation of Neural Signals in Calcium Imaging »
Hakan Inan · Murat Erdogdu · Mark Schnitzer -
2017 Poster: Estimating High-dimensional Non-Gaussian Multiple Index Models via Stein’s Lemma »
Zhuoran Yang · Krishnakumar Balasubramanian · Zhaoran Wang · Han Liu -
2017 Poster: Inference in Graphical Models via Semidefinite Programming Hierarchies »
Murat Erdogdu · Yash Deshpande · Andrea Montanari -
2016 Poster: Scaled Least Squares Estimator for GLMs in Large-Scale Problems »
Murat Erdogdu · Lee H Dicker · Mohsen Bayati -
2015 Poster: Convergence rates of sub-sampled Newton methods »
Murat Erdogdu · Andrea Montanari -
2015 Poster: Newton-Stein Method: A Second Order Method for GLMs via Stein's Lemma »
Murat Erdogdu -
2015 Spotlight: Newton-Stein Method: A Second Order Method for GLMs via Stein's Lemma »
Murat Erdogdu -
2013 Poster: Estimating LASSO Risk and Noise Level »
Mohsen Bayati · Murat Erdogdu · Andrea Montanari