Timezone: »
There are two types of deep generative models: explicit and implicit. The former defines an explicit density form that allows likelihood inference; while the latter targets a flexible transformation from random noise to generated samples. While the two classes of generative models have shown great power in many applications, both of them, when used alone, suffer from respective limitations and drawbacks. To take full advantages of both models and enable mutual compensation, we propose a novel joint training framework that bridges an explicit (unnormalized) density estimator and an implicit sample generator via Stein discrepancy. We show that our method 1) induces novel mutual regularization via kernel Sobolev norm penalization and Moreau-Yosida regularization, and 2) stabilizes the training dynamics. Empirically, we demonstrate that proposed method can facilitate the density estimator to more accurately identify data modes and guide the generator to output higher-quality samples, comparing with training a single counterpart. The new approach also shows promising results when the training samples are contaminated or limited.
Author Information
Qitian Wu (Shanghai Jiao Tong University)
Rui Gao (University of Texas at Austin)
Hongyuan Zha (Georgia Tech)
More from the Same Authors
-
2022 Poster: Learning Substructure Invariance for Out-of-Distribution Molecular Representations »
Nianzu Yang · Kaipeng Zeng · Qitian Wu · Xiaosong Jia · Junchi Yan -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Learning Substructure Invariance for Out-of-Distribution Molecular Representations »
Nianzu Yang · Kaipeng Zeng · Qitian Wu · Xiaosong Jia · Junchi Yan -
2022 Spotlight: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification »
Qitian Wu · Wentao Zhao · Zenan Li · David P Wipf · Junchi Yan -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2022 Poster: Distributionally robust weighted k-nearest neighbors »
Shixiang Zhu · Liyan Xie · Minghe Zhang · Rui Gao · Yao Xie -
2022 Poster: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification »
Qitian Wu · Wentao Zhao · Zenan Li · David P Wipf · Junchi Yan -
2022 Poster: Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks »
Chenxiao Yang · Qitian Wu · Junchi Yan -
2022 Poster: GraphDE: A Generative Framework for Debiased Learning and Out-of-Distribution Detection on Graphs »
Zenan Li · Qitian Wu · Fan Nie · Junchi Yan -
2022 Poster: Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment »
Chenxiao Yang · Qitian Wu · Qingsong Wen · Zhiqiang Zhou · Liang Sun · Junchi Yan -
2021 Poster: From Canonical Correlation Analysis to Self-supervised Graph Neural Networks »
Hengrui Zhang · Qitian Wu · Junchi Yan · David Wipf · Philip S Yu -
2021 Poster: Analyzing the Generalization Capability of SGLD Using Properties of Gaussian Channels »
Hao Wang · Yizhe Huang · Rui Gao · Flavio Calmon -
2021 Poster: Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach »
Qitian Wu · Chenxiao Yang · Junchi Yan -
2021 Poster: Generalization Bounds for (Wasserstein) Robust Optimization »
Yang An · Rui Gao -
2021 Poster: Random Noise Defense Against Query-Based Black-Box Attacks »
Zeyu Qin · Yanbo Fan · Hongyuan Zha · Baoyuan Wu -
2020 Poster: Learning to Incentivize Other Learning Agents »
Jiachen Yang · Ang Li · Mehrdad Farajtabar · Peter Sunehag · Edward Hughes · Hongyuan Zha -
2020 Poster: Network Diffusions via Neural Mean-Field Dynamics »
Shushan He · Hongyuan Zha · Xiaojing Ye -
2020 Poster: Differentiable Top-k with Optimal Transport »
Yujia Xie · Hanjun Dai · Minshuo Chen · Bo Dai · Tuo Zhao · Hongyuan Zha · Wei Wei · Tomas Pfister -
2020 Poster: Learning Strategic Network Emergence Games »
Rakshit Trivedi · Hongyuan Zha -
2019 Workshop: Learning with Temporal Point Processes »
Manuel Rodriguez · Le Song · Isabel Valera · Yan Liu · Abir De · Hongyuan Zha -
2019 Poster: Learning Latent Process from High-Dimensional Event Sequences via Efficient Sampling »
Qitian Wu · Zixuan Zhang · Xiaofeng Gao · Junchi Yan · Guihai Chen -
2019 Poster: Meta Learning with Relational Information for Short Sequences »
Yujia Xie · Haoming Jiang · Feng Liu · Tuo Zhao · Hongyuan Zha -
2018 Poster: Robust Hypothesis Testing Using Wasserstein Uncertainty Sets »
Rui Gao · Liyan Xie · Yao Xie · Huan Xu -
2018 Spotlight: Robust Hypothesis Testing Using Wasserstein Uncertainty Sets »
Rui Gao · Liyan Xie · Yao Xie · Huan Xu -
2017 Poster: A Dirichlet Mixture Model of Hawkes Processes for Event Sequence Clustering »
Hongteng Xu · Hongyuan Zha -
2017 Poster: Predicting User Activity Level In Point Processes With Mass Transport Equation »
Yichen Wang · Xiaojing Ye · Hongyuan Zha · Le Song -
2017 Poster: Wasserstein Learning of Deep Generative Point Process Models »
Shuai Xiao · Mehrdad Farajtabar · Xiaojing Ye · Junchi Yan · Xiaokang Yang · Le Song · Hongyuan Zha -
2016 Poster: Multistage Campaigning in Social Networks »
Mehrdad Farajtabar · Xiaojing Ye · Sahar Harati · Le Song · Hongyuan Zha -
2015 Poster: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2015 Oral: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2014 Poster: Shaping Social Activity by Incentivizing Users »
Mehrdad Farajtabar · Nan Du · Manuel Gomez Rodriguez · Isabel Valera · Hongyuan Zha · Le Song -
2013 Poster: Scalable Influence Estimation in Continuous-Time Diffusion Networks »
Nan Du · Le Song · Manuel Gomez Rodriguez · Hongyuan Zha -
2013 Oral: Scalable Influence Estimation in Continuous-Time Diffusion Networks »
Nan Du · Le Song · Manuel Gomez Rodriguez · Hongyuan Zha -
2009 Poster: Dirichlet-Bernoulli Alignment: A Generative Model for Multi-Class Multi-Label Multi-Instance Corpora »
Shuang Yang · Hongyuan Zha · Bao-Gang Hu -
2008 Poster: Convergence and Rate of Convergence of A Manifold-Based Dimension Reduction »
Andrew Smith · Xiaoming Huo · Hongyuan Zha -
2007 Poster: A General Boosting Method and its Application to Learning Ranking Functions for Web Search »
Zhaohui Zheng · Hongyuan Zha · Tong Zhang · Olivier Chapelle · Keke Chen · Gordon Sun