Timezone: »
Inferring the parameters of a stochastic model based on experimental observations is central to the scientific method. A particularly challenging setting is when the model is strongly indeterminate, i.e. when distinct sets of parameters yield identical observations. This arises in many practical situations, such as when inferring the distance and power of a radio source (is the source close and weak or far and strong?) or when estimating the amplifier gain and underlying brain activity of an electrophysiological experiment. In this work, we present hierarchical neural posterior estimation (HNPE), a novel method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters. Our method extends recent developments in simulation-based inference (SBI) based on normalizing flows to Bayesian hierarchical models. We validate quantitatively our proposal on a motivating example amenable to analytical solutions and then apply it to invert a well known non-linear model from computational neuroscience, using both simulated and real EEG data.
Author Information
Pedro Rodrigues (Inria)
Thomas Moreau (INRIA Saclay - Parietal)
Gilles Louppe (University of Liège)
Alexandre Gramfort (INRIA)
More from the Same Authors
-
2021 : Electromagnetic neural source imaging under sparsity constraints with SURE-based hyperparameter tuning »
Pierre-Antoine Bannier · Quentin Bertrand · Joseph Salmon · Alexandre Gramfort -
2021 : The NeurIPS 2021 BEETL Competition: Benchmarks for EEG Transfer Learning + Q&A »
Xiaoxi Wei · Vinay Jayaram · Sylvain Chevallier · Giulia Luise · Camille Jeunet · Moritz Grosse-Wentrup · Alexandre Gramfort · Aldo A Faisal -
2021 Poster: Shared Independent Component Analysis for Multi-Subject Neuroimaging »
Hugo Richard · Pierre Ablin · Bertrand Thirion · Alexandre Gramfort · Aapo Hyvarinen -
2021 Poster: Truncated Marginal Neural Ratio Estimation »
Benjamin K Miller · Alex Cole · Patrick Forré · Gilles Louppe · Christoph Weniger -
2021 Poster: From global to local MDI variable importances for random forests and when they are Shapley values »
Antonio Sutera · Gilles Louppe · Van Anh Huynh-Thu · Louis Wehenkel · Pierre Geurts -
2017 : Panel session »
Iain Murray · Max Welling · Juan Carrasquilla · Anatole von Lilienfeld · Gilles Louppe · Kyle Cranmer -
2017 : Invited talk 2: Adversarial Games for Particle Physics »
Gilles Louppe -
2017 Poster: Learning to Pivot with Adversarial Networks »
Gilles Louppe · Michael Kagan · Kyle Cranmer -
2017 Poster: Learning the Morphology of Brain Signals Using Alpha-Stable Convolutional Sparse Coding »
Mainak Jas · Tom Dupré la Tour · Umut Simsekli · Alexandre Gramfort -
2013 Poster: Understanding variable importances in forests of randomized trees »
Gilles Louppe · Louis Wehenkel · Antonio Sutera · Pierre Geurts -
2013 Spotlight: Understanding variable importances in forests of randomized trees »
Gilles Louppe · Louis Wehenkel · Antonio Sutera · Pierre Geurts -
2010 Poster: Brain covariance selection: better individual functional connectivity models using population prior »
Gaël Varoquaux · Alexandre Gramfort · Jean-Baptiste Poline · Bertrand Thirion