Timezone: »
Inferring the parameters of a stochastic model based on experimental observations is central to the scientific method. A particularly challenging setting is when the model is strongly indeterminate, i.e. when distinct sets of parameters yield identical observations. This arises in many practical situations, such as when inferring the distance and power of a radio source (is the source close and weak or far and strong?) or when estimating the amplifier gain and underlying brain activity of an electrophysiological experiment. In this work, we present hierarchical neural posterior estimation (HNPE), a novel method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters. Our method extends recent developments in simulation-based inference (SBI) based on normalizing flows to Bayesian hierarchical models. We validate quantitatively our proposal on a motivating example amenable to analytical solutions and then apply it to invert a well known non-linear model from computational neuroscience, using both simulated and real EEG data.
Author Information
Pedro Rodrigues (Inria)
Thomas Moreau (INRIA Saclay - Parietal)
Gilles Louppe (University of Liège)
Alexandre Gramfort (INRIA)
More from the Same Authors
-
2021 : Electromagnetic neural source imaging under sparsity constraints with SURE-based hyperparameter tuning »
Pierre-Antoine Bannier · Quentin Bertrand · Joseph Salmon · Alexandre Gramfort -
2022 : Validation Diagnostics for SBI algorithms based on Normalizing Flows »
Julia Linhart · Alexandre Gramfort · Pedro Rodrigues -
2022 Poster: Benchopt: Reproducible, efficient and collaborative optimization benchmarks »
Thomas Moreau · Mathurin Massias · Alexandre Gramfort · Pierre Ablin · Pierre-Antoine Bannier · Benjamin Charlier · Mathieu Dagréou · Tom Dupre la Tour · Ghislain DURIF · Cassio F. Dantas · Quentin Klopfenstein · Johan Larsson · En Lai · Tanguy Lefort · Benoît Malézieux · Badr MOUFAD · Binh T. Nguyen · Alain Rakotomamonjy · Zaccharie Ramzi · Joseph Salmon · Samuel Vaiter -
2022 Poster: Deep invariant networks with differentiable augmentation layers »
Cédric ROMMEL · Thomas Moreau · Alexandre Gramfort -
2022 Poster: Toward a realistic model of speech processing in the brain with self-supervised learning »
Juliette MILLET · Charlotte Caucheteux · pierre orhan · Yves Boubenec · Alexandre Gramfort · Ewan Dunbar · Christophe Pallier · Jean-Remi King -
2021 : The NeurIPS 2021 BEETL Competition: Benchmarks for EEG Transfer Learning + Q&A »
Xiaoxi Wei · Vinay Jayaram · Sylvain Chevallier · Giulia Luise · Camille Jeunet · Moritz Grosse-Wentrup · Alexandre Gramfort · Aldo A Faisal -
2021 Poster: Shared Independent Component Analysis for Multi-Subject Neuroimaging »
Hugo Richard · Pierre Ablin · Bertrand Thirion · Alexandre Gramfort · Aapo Hyvarinen -
2021 Poster: Truncated Marginal Neural Ratio Estimation »
Benjamin K Miller · Alex Cole · Patrick Forré · Gilles Louppe · Christoph Weniger -
2021 Poster: From global to local MDI variable importances for random forests and when they are Shapley values »
Antonio Sutera · Gilles Louppe · Van Anh Huynh-Thu · Louis Wehenkel · Pierre Geurts -
2020 Poster: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Spotlight: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Poster: Statistical control for spatio-temporal MEG/EEG source imaging with desparsified mutli-task Lasso »
Jerome-Alexis Chevalier · Joseph Salmon · Alexandre Gramfort · Bertrand Thirion -
2019 Poster: Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso »
Quentin Bertrand · Mathurin Massias · Alexandre Gramfort · Joseph Salmon -
2019 Poster: Learning step sizes for unfolded sparse coding »
Pierre Ablin · Thomas Moreau · Mathurin Massias · Alexandre Gramfort -
2019 Poster: Manifold-regression to predict from MEG/EEG brain signals without source modeling »
David Sabbagh · Pierre Ablin · Gael Varoquaux · Alexandre Gramfort · Denis A. Engemann -
2018 Poster: Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals »
Tom Dupré la Tour · Thomas Moreau · Mainak Jas · Alexandre Gramfort -
2017 : Panel session »
Iain Murray · Max Welling · Juan Carrasquilla · Anatole von Lilienfeld · Gilles Louppe · Kyle Cranmer -
2017 : Invited talk 2: Adversarial Games for Particle Physics »
Gilles Louppe -
2017 Poster: Learning to Pivot with Adversarial Networks »
Gilles Louppe · Michael Kagan · Kyle Cranmer -
2017 Poster: Learning the Morphology of Brain Signals Using Alpha-Stable Convolutional Sparse Coding »
Mainak Jas · Tom Dupré la Tour · Umut Simsekli · Alexandre Gramfort -
2016 Poster: GAP Safe Screening Rules for Sparse-Group Lasso »
Eugene Ndiaye · Olivier Fercoq · Alexandre Gramfort · Joseph Salmon -
2015 Poster: GAP Safe screening rules for sparse multi-task and multi-class models »
Eugene Ndiaye · Olivier Fercoq · Alexandre Gramfort · Joseph Salmon -
2013 Poster: Understanding variable importances in forests of randomized trees »
Gilles Louppe · Louis Wehenkel · Antonio Sutera · Pierre Geurts -
2013 Spotlight: Understanding variable importances in forests of randomized trees »
Gilles Louppe · Louis Wehenkel · Antonio Sutera · Pierre Geurts -
2010 Poster: Brain covariance selection: better individual functional connectivity models using population prior »
Gaël Varoquaux · Alexandre Gramfort · Jean-Baptiste Poline · Bertrand Thirion