Timezone: »
Current approaches for multi-horizon time series forecasting using recurrent neural networks (RNNs) focus on issuing point estimates, which is insufficient for decision-making in critical application domains where an uncertainty estimate is also required. Existing approaches for uncertainty quantification in RNN-based time-series forecasts are limited as they may require significant alterations to the underlying model architecture, may be computationally complex, may be difficult to calibrate, may incur high sample complexity, and may not provide theoretical guarantees on frequentist coverage. In this paper, we extend the inductive conformal prediction framework to the time-series forecasting setup, and propose a lightweight algorithm to address all of the above limitations, providing uncertainty estimates with theoretical guarantees for any multi-horizon forecast predictor and any dataset with minimal exchangeability assumptions. We demonstrate the effectiveness of our approach by comparing it with existing benchmarks on a variety of synthetic and real-world datasets.
Author Information
Kamile Stankeviciute (University of Oxford)
Ahmed M. Alaa (UCLA)
Mihaela van der Schaar (University of Cambridge)
More from the Same Authors
-
2021 Spotlight: On Inductive Biases for Heterogeneous Treatment Effect Estimation »
Alicia Curth · Mihaela van der Schaar -
2021 Spotlight: Explaining Latent Representations with a Corpus of Examples »
Jonathan Crabbe · Zhaozhi Qian · Fergus Imrie · Mihaela van der Schaar -
2021 : Really Doing Great at Estimating CATE? A Critical Look at ML Benchmarking Practices in Treatment Effect Estimation »
Alicia Curth · David Svensson · Jim Weatherall · Mihaela van der Schaar -
2021 : The Medkit-Learn(ing) Environment: Medical Decision Modelling through Simulation »
Alex Chan · Ioana Bica · Alihan Hüyük · Daniel Jarrett · Mihaela van der Schaar -
2022 Poster: ETAB: A Benchmark Suite for Visual Representation Learning in Echocardiography »
Ahmed M. Alaa · Anthony Philippakis · David Sontag -
2021 Poster: Invariant Causal Imitation Learning for Generalizable Policies »
Ioana Bica · Daniel Jarrett · Mihaela van der Schaar -
2021 Poster: Explaining Latent Representations with a Corpus of Examples »
Jonathan Crabbe · Zhaozhi Qian · Fergus Imrie · Mihaela van der Schaar -
2021 Poster: Time-series Generation by Contrastive Imitation »
Daniel Jarrett · Ioana Bica · Mihaela van der Schaar -
2021 Poster: Closing the loop in medical decision support by understanding clinical decision-making: A case study on organ transplantation »
Yuchao Qin · Fergus Imrie · Alihan Hüyük · Daniel Jarrett · alexander gimson · Mihaela van der Schaar -
2021 Poster: DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks »
Boris van Breugel · Trent Kyono · Jeroen Berrevoets · Mihaela van der Schaar -
2021 Poster: MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms »
Trent Kyono · Yao Zhang · Alexis Bellot · Mihaela van der Schaar -
2021 Poster: Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease Progression »
Zhaozhi Qian · William Zame · Lucas Fleuren · Paul Elbers · Mihaela van der Schaar -
2021 Poster: SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data »
Alicia Curth · Changhee Lee · Mihaela van der Schaar -
2021 Poster: On Inductive Biases for Heterogeneous Treatment Effect Estimation »
Alicia Curth · Mihaela van der Schaar -
2021 Poster: SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes »
Zhaozhi Qian · Yao Zhang · Ioana Bica · Angela Wood · Mihaela van der Schaar -
2021 Poster: Estimating Multi-cause Treatment Effects via Single-cause Perturbation »
Zhaozhi Qian · Alicia Curth · Mihaela van der Schaar -
2019 Poster: Time-series Generative Adversarial Networks »
Jinsung Yoon · Daniel Jarrett · Mihaela van der Schaar -
2018 Poster: Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks »
Bryan Lim · Ahmed M. Alaa · Mihaela van der Schaar -
2017 Poster: Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks »
Ahmed M. Alaa · Mihaela van der Schaar -
2017 Spotlight: Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks »
Ahmed M. Alaa · Mihaela van der Schaar -
2017 Poster: Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes »
Ahmed M. Alaa · Mihaela van der Schaar -
2016 Poster: Balancing Suspense and Surprise: Timely Decision Making with Endogenous Information Acquisition »
Ahmed M. Alaa · Mihaela van der Schaar -
2016 Poster: A Non-parametric Learning Method for Confidently Estimating Patient's Clinical State and Dynamics »
William Hoiles · Mihaela van der Schaar -
2014 Poster: Discovering, Learning and Exploiting Relevance »
Cem Tekin · Mihaela van der Schaar