Timezone: »
We address the non-convex optimisation problem of finding a sparse matrix on the Stiefel manifold (matrices with mutually orthogonal columns of unit length) that maximises (or minimises) a quadratic objective function. Optimisation problems on the Stiefel manifold occur for example in spectral relaxations of various combinatorial problems, such as graph matching, clustering, or permutation synchronisation. Although sparsity is a desirable property in such settings, it is mostly neglected in spectral formulations since existing solvers, e.g. based on eigenvalue decomposition, are unable to account for sparsity while at the same time maintaining global optimality guarantees. We fill this gap and propose a simple yet effective sparsity-promoting modification of the Orthogonal Iteration algorithm for finding the dominant eigenspace of a matrix. By doing so, we can guarantee that our method finds a Stiefel matrix that is globally optimal with respect to the quadratic objective function, while in addition being sparse. As a motivating application we consider the task of permutation synchronisation, which can be understood as a constrained clustering problem that has particular relevance for matching multiple images or 3D shapes in computer vision, computer graphics, and beyond. We demonstrate that the proposed approach outperforms previous methods in this domain.
Author Information
Florian Bernard (University of Bonn)
Daniel Cremers (Technical University of Munich)
Johan Thunberg (Halmstad University)
More from the Same Authors
-
2021 : STEP: Segmenting and Tracking Every Pixel »
Mark Weber · Jun Xie · Maxwell Collins · Yukun Zhu · Paul Voigtlaender · Hartwig Adam · Bradley Green · Andreas Geiger · Bastian Leibe · Daniel Cremers · Aljosa Osep · Laura Leal-TaixĂ© · Liang-Chieh Chen -
2022 Poster: What Makes Graph Neural Networks Miscalibrated? »
Hans Hao-Hsun Hsu · Yuesong Shen · Christian Tomani · Daniel Cremers -
2022 Poster: Deep Combinatorial Aggregation »
Yuesong Shen · Daniel Cremers -
2022 : A Graph Is More Than Its Nodes: Towards Structured Uncertainty-Aware Learning on Graphs »
Hans Hao-Hsun Hsu · Yuesong Shen · Daniel Cremers -
2022 Spotlight: Deep Combinatorial Aggregation »
Yuesong Shen · Daniel Cremers -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Spotlight: What Makes Graph Neural Networks Miscalibrated? »
Hans Hao-Hsun Hsu · Yuesong Shen · Christian Tomani · Daniel Cremers -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2020 Poster: Deep Shells: Unsupervised Shape Correspondence with Optimal Transport »
Marvin Eisenberger · Aysim Toker · Laura Leal-TaixĂ© · Daniel Cremers -
2016 Poster: Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images »
Vladimir Golkov · Marcin Skwark · Antonij Golkov · Alexey Dosovitskiy · Thomas Brox · Jens Meiler · Daniel Cremers -
2016 Oral: Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images »
Vladimir Golkov · Marcin Skwark · Antonij Golkov · Alexey Dosovitskiy · Thomas Brox · Jens Meiler · Daniel Cremers