Timezone: »
Poster
Multiclass Boosting and the Cost of Weak Learning
Nataly Brukhim · Elad Hazan · Shay Moran · Indraneel Mukherjee · Robert Schapire
Boosting is an algorithmic approach which is based on the idea of combining weak and moderately inaccurate hypotheses to a strong and accurate one. In this work we study multiclass boosting with a possibly large number of classes or categories. Multiclass boosting can be formulated in various ways. Here, we focus on an especially natural formulation in which the weak hypotheses are assumed to belong to an ''easy-to-learn'' base class, and the weak learner is an agnostic PAC learner for that class with respect to the standard classification loss. This is in contrast with other, more complicated losses as have often been considered in the past. The goal of the overall boosting algorithm is then to learn a combination of weak hypotheses by repeatedly calling the weak learner.We study the resources required for boosting, especially how theydepend on the number of classes $k$, for both the booster and weak learner.We find that the boosting algorithm itself only requires $O(\log k)$samples, as we show by analyzing a variant of AdaBoost for oursetting. In stark contrast, assuming typical limits on the number of weak-learner calls,we prove that the number of samples required by a weak learner is at least polynomial in $k$, exponentially more than thenumber of samples needed by the booster.Alternatively, we prove that the weak learner's accuracy parametermust be smaller than an inverse polynomial in $k$, showing that the returned weakhypotheses must be nearly the best in their class when $k$ is large.We also prove a trade-off between number of oracle calls and theresources required of the weak learner, meaning that the fewer calls to theweak learner the more that is demanded on each call.
Author Information
Nataly Brukhim (Princeton University (SSO))
Elad Hazan (Princeton University)
Shay Moran (Technion)
Indraneel Mukherjee (Princeton University)
Robert Schapire (MIcrosoft Research)
More from the Same Authors
-
2021 Spotlight: Towards a Unified Information-Theoretic Framework for Generalization »
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy -
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2022 Poster: Integral Probability Metrics PAC-Bayes Bounds »
Ron Amit · Baruch Epstein · Shay Moran · Ron Meir -
2022 Poster: Universal Rates for Interactive Learning »
Steve Hanneke · Amin Karbasi · Shay Moran · Grigoris Velegkas -
2022 Poster: On Optimal Learning Under Targeted Data Poisoning »
Steve Hanneke · Amin Karbasi · Mohammad Mahmoody · Idan Mehalel · Shay Moran -
2022 Poster: Provably sample-efficient RL with side information about latent dynamics »
Yao Liu · Dipendra Misra · Miro Dudik · Robert Schapire -
2021 Poster: Online Control of Unknown Time-Varying Dynamical Systems »
Edgar Minasyan · Paula Gradu · Max Simchowitz · Elad Hazan -
2021 Poster: Towards a Unified Information-Theoretic Framework for Generalization »
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2020 Poster: Geometric Exploration for Online Control »
Orestis Plevrakis · Elad Hazan -
2020 Poster: Non-Stochastic Control with Bandit Feedback »
Paula Gradu · John Hallman · Elad Hazan -
2020 Poster: Synthetic Data Generators -- Sequential and Private »
Olivier Bousquet · Roi Livni · Shay Moran -
2020 Poster: Learning from Mixtures of Private and Public Populations »
Raef Bassily · Shay Moran · Anupama Nandi -
2020 Poster: Online Agnostic Boosting via Regret Minimization »
Nataly Brukhim · Xinyi Chen · Elad Hazan · Shay Moran -
2020 Poster: A Limitation of the PAC-Bayes Framework »
Roi Livni · Shay Moran -
2019 : Logarithmic Regret for Online Control »
Naman Agarwal · Elad Hazan · Karan Singh -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Private Learning Implies Online Learning: An Efficient Reduction »
Alon Gonen · Elad Hazan · Shay Moran -
2019 Spotlight: Private Learning Implies Online Learning: An Efficient Reduction »
Alon Gonen · Elad Hazan · Shay Moran -
2019 Poster: Reinforcement Learning with Convex Constraints »
Sobhan Miryoosefi · Kianté Brantley · Hal Daumé III · Miro Dudik · Robert Schapire -
2019 Poster: An adaptive nearest neighbor rule for classification »
Akshay Balsubramani · Sanjoy Dasgupta · yoav Freund · Shay Moran -
2019 Spotlight: An adaptive nearest neighbor rule for classification »
Akshay Balsubramani · Sanjoy Dasgupta · yoav Freund · Shay Moran -
2019 Poster: Learning to Screen »
Alon Cohen · Avinatan Hassidim · Haim Kaplan · Yishay Mansour · Shay Moran -
2019 Poster: Limits of Private Learning with Access to Public Data »
Raef Bassily · Shay Moran · Noga Alon -
2019 Poster: Logarithmic Regret for Online Control »
Naman Agarwal · Elad Hazan · Karan Singh -
2019 Oral: Logarithmic Regret for Online Control »
Naman Agarwal · Elad Hazan · Karan Singh -
2018 Poster: Online Improper Learning with an Approximation Oracle »
Elad Hazan · Wei Hu · Yuanzhi Li · Zhiyuan Li -
2018 Poster: Online Learning of Quantum States »
Scott Aaronson · Xinyi Chen · Elad Hazan · Satyen Kale · Ashwin Nayak -
2018 Poster: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2018 Spotlight: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2018 Poster: Spectral Filtering for General Linear Dynamical Systems »
Elad Hazan · Holden Lee · Karan Singh · Cyril Zhang · Yi Zhang -
2018 Oral: Spectral Filtering for General Linear Dynamical Systems »
Elad Hazan · Holden Lee · Karan Singh · Cyril Zhang · Yi Zhang -
2017 Poster: Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues »
Noga Alon · Moshe Babaioff · Yannai A. Gonczarowski · Yishay Mansour · Shay Moran · Amir Yehudayoff -
2017 Spotlight: Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues »
Noga Alon · Moshe Babaioff · Yannai A. Gonczarowski · Yishay Mansour · Shay Moran · Amir Yehudayoff -
2017 Poster: Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls »
Zeyuan Allen-Zhu · Elad Hazan · Wei Hu · Yuanzhi Li -
2017 Poster: Learning Linear Dynamical Systems via Spectral Filtering »
Elad Hazan · Karan Singh · Cyril Zhang -
2017 Spotlight: Online Learning of Linear Dynamical Systems »
Elad Hazan · Karan Singh · Cyril Zhang -
2017 Spotlight: Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls »
Zeyuan Allen-Zhu · Elad Hazan · Wei Hu · Yuanzhi Li -
2016 Poster: Optimal Black-Box Reductions Between Optimization Objectives »
Zeyuan Allen-Zhu · Elad Hazan -
2016 Poster: Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits »
Vasilis Syrgkanis · Haipeng Luo · Akshay Krishnamurthy · Robert Schapire -
2016 Poster: Supervised learning through the lens of compression »
Ofir David · Shay Moran · Amir Yehudayoff -
2016 Oral: Supervised learning through the lens of compression »
Ofir David · Shay Moran · Amir Yehudayoff -
2016 Poster: A Non-generative Framework and Convex Relaxations for Unsupervised Learning »
Elad Hazan · Tengyu Ma -
2016 Poster: The Limits of Learning with Missing Data »
Brian Bullins · Elad Hazan · Tomer Koren -
2015 Poster: Online Learning for Adversaries with Memory: Price of Past Mistakes »
Oren Anava · Elad Hazan · Shie Mannor -
2015 Poster: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Spotlight: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Poster: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire -
2015 Oral: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire -
2015 Poster: Beyond Convexity: Stochastic Quasi-Convex Optimization »
Elad Hazan · Kfir Y. Levy · Shai Shalev-Shwartz -
2015 Poster: Online Gradient Boosting »
Alina Beygelzimer · Elad Hazan · Satyen Kale · Haipeng Luo -
2009 Poster: On Stochastic and Worst-case Models for Investing »
Elad Hazan · Satyen Kale -
2009 Oral: On Stochastic and Worst-case Models for Investing »
Elad Hazan · Satyen Kale -
2009 Poster: An Efficient Interior-Point Method for Minimum-Regret Learning in Online Convex Optimization »
Elad Hazan · Nimrod Megiddo -
2009 Spotlight: An Efficient Interior-Point Method for Minimum-Regret Learning in Online Convex Optimization »
Elad Hazan · Nimrod Megiddo -
2009 Poster: Beyond Convexity: Online Submodular Minimization »
Elad Hazan · Satyen Kale -
2007 Oral: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Computational Equivalence of Fixed Points and No Regret Algorithms, and Convergence to Equilibria »
Elad Hazan · Satyen Kale