Timezone: »
Optical Processing Units (OPUs) -- low-power photonic chips dedicated to large scale random projections -- have been used in previous work to train deep neural networks using Direct Feedback Alignment (DFA), an effective alternative to backpropagation. Here, we demonstrate how to leverage the intrinsic noise of optical random projections to build a differentially private DFA mechanism, making OPUs a solution of choice to provide a \emph{private-by-design} training. We provide a theoretical analysis of our adaptive privacy mechanism, carefully measuring how the noise of optical random projections propagates in the process and gives rise to provable Differential Privacy. Finally, we conduct experiments demonstrating the ability of our learning procedure to achieve solid end-task performance.
Author Information
Ruben Ohana (Ecole Normale Supérieure & LightOn)
Hamlet Medina (Criteo)
Julien Launay (École Normale Supérieure)
Alessandro Cappelli (Lighton)
Iacopo Poli (LightOn)
Liva Ralaivola (LIF, IUF, Aix-Marseille University, CNRS)
Alain Rakotomamonjy (Université de Rouen Normandie Criteo AI Lab)
More from the Same Authors
-
2022 : Continuous PDE Dynamics Forecasting with Implicit Neural Representations »
Yuan Yin · Matthieu Kirchmeyer · Jean-Yves Franceschi · Alain Rakotomamonjy · Patrick Gallinari -
2022 : Scaling Laws Beyond Backpropagation »
Matthew Filipovich · Alessandro Cappelli · Daniel Hesslow · Julien Launay -
2022 Poster: Benchopt: Reproducible, efficient and collaborative optimization benchmarks »
Thomas Moreau · Mathurin Massias · Alexandre Gramfort · Pierre Ablin · Pierre-Antoine Bannier · Benjamin Charlier · Mathieu Dagréou · Tom Dupre la Tour · Ghislain DURIF · Cassio F. Dantas · Quentin Klopfenstein · Johan Larsson · En Lai · Tanguy Lefort · Benoît Malézieux · Badr MOUFAD · Binh T. Nguyen · Alain Rakotomamonjy · Zaccharie Ramzi · Joseph Salmon · Samuel Vaiter -
2022 Poster: Diverse Weight Averaging for Out-of-Distribution Generalization »
Alexandre Rame · Matthieu Kirchmeyer · Thibaud Rahier · Alain Rakotomamonjy · Patrick Gallinari · Matthieu Cord -
2020 Poster: Reservoir Computing meets Recurrent Kernels and Structured Transforms »
Jonathan Dong · Ruben Ohana · Mushegh Rafayelyan · Florent Krzakala -
2020 Oral: Reservoir Computing meets Recurrent Kernels and Structured Transforms »
Jonathan Dong · Ruben Ohana · Mushegh Rafayelyan · Florent Krzakala -
2019 Poster: Screening Sinkhorn Algorithm for Regularized Optimal Transport »
Mokhtar Z. Alaya · Maxime Berar · Gilles Gasso · Alain Rakotomamonjy -
2019 Poster: Singleshot : a scalable Tucker tensor decomposition »
Abraham Traore · Maxime Berar · Alain Rakotomamonjy -
2017 Poster: Bandits Dueling on Partially Ordered Sets »
Julien Audiffren · Liva Ralaivola -
2017 Poster: Joint distribution optimal transportation for domain adaptation »
Nicolas Courty · Rémi Flamary · Amaury Habrard · Alain Rakotomamonjy -
2015 Poster: Cornering Stationary and Restless Mixing Bandits with Remix-UCB »
Julien Audiffren · Liva Ralaivola -
2012 Poster: Multiple Operator-valued Kernel Learning »
Hachem Kadri · Alain Rakotomamonjy · Francis Bach · philippe preux -
2012 Poster: Confusion-Based Online Learning and a Passive-Aggressive Scheme »
Liva Ralaivola -
2012 Spotlight: Confusion-Based Online Learning and a Passive-Aggressive Scheme »
Liva Ralaivola -
2010 Workshop: New Directions in Multiple Kernel Learning »
Marius Kloft · Ulrich Rueckert · Cheng Soon Ong · Alain Rakotomamonjy · Soeren Sonnenburg · Francis Bach -
2010 Poster: Empirical Bernstein Inequalities for U-Statistics »
Thomas Peel · Sandrine Anthoine · Liva Ralaivola -
2009 Workshop: Temporal Segmentation: Perspectives from Statistics, Machine Learning, and Signal Processing »
Stephane Canu · Olivier Cappé · Arthur Gretton · Zaid Harchaoui · Alain Rakotomamonjy · Jean-Philippe Vert -
2008 Poster: Suppport Vector Machines with a Reject Option »
Yves Grandvalet · Joseph Keshet · Alain Rakotomamonjy · Stephane Canu