Timezone: »
Neuronal computations depend on synaptic connectivity and intrinsic electrophysiological properties. Synaptic connectivity determines which inputs from presynaptic neurons are integrated, while cellular properties determine how inputs are filtered over time. Unlike their biological counterparts, most computational approaches to learning in simulated neural networks are limited to changes in synaptic connectivity. However, if intrinsic parameters change, neural computations are altered drastically. Here, we include the parameters that determine the intrinsic properties, e.g., time constants and reset potential, into the learning paradigm. Using sparse feedback signals that indicate target spike times, and gradient-based parameter updates, we show that the intrinsic parameters can be learned along with the synaptic weights to produce specific input-output functions. Specifically, we use a teacher-student paradigm in which a randomly initialised leaky integrate-and-fire or resonate-and-fire neuron must recover the parameters of a teacher neuron. We show that complex temporal functions can be learned online and without backpropagation through time, relying on event-based updates only. Our results are a step towards online learning of neural computations from ungraded and unsigned sparse feedback signals with a biologically inspired learning mechanism.
Author Information
Lukas Braun (University of Oxford)
Tim Vogels (Institute of Science and Technology)
More from the Same Authors
-
2023 Poster: Meta-learning families of plasticity rules in recurrent spiking networks using simulation-based inference »
Basile Confavreux · Poornima Ramesh · Pedro Goncalves · Jakob H Macke · Tim Vogels -
2022 Poster: Exact learning dynamics of deep linear networks with prior knowledge »
Lukas Braun · ClĂ©mentine DominĂ© · James Fitzgerald · Andrew Saxe -
2020 Poster: A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network »
Basile Confavreux · Friedemann Zenke · Everton Agnes · Timothy Lillicrap · Tim Vogels -
2020 Spotlight: A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network »
Basile Confavreux · Friedemann Zenke · Everton Agnes · Timothy Lillicrap · Tim Vogels