Timezone: »
More recently, there has been a surge of interest in employing machine learning approaches to expedite the drug discovery process where virtual screening for hit discovery and ADMET prediction for lead optimization play essential roles. One of the main obstacles to the wide success of machine learning approaches in these two tasks is that the number of compounds labeled with activities or ADMET properties is too small to build an effective predictive model. This paper seeks to remedy the problem by transferring the knowledge from previous assays, namely in-vivo experiments, by different laboratories and against various target proteins. To accommodate these wildly different assays and capture the similarity between assays, we propose a functional rationalized meta-learning algorithm FRML for such knowledge transfer. FRML constructs the predictive model with layers of neural sub-networks or so-called functional regions. Building on this, FRML shares an initialization for the weights of the predictive model across all assays, while customizes it to each assay with a region localization network choosing the pertinent regions. The compositionality of the model improves the capacity of generalization to various and even out-of-distribution tasks. Empirical results on both virtual screening and ADMET prediction validate the superiority of FRML over state-of-the-art baselines powered with interpretability in assay relationship.
Author Information
Huaxiu Yao (Stanford University)
Ying Wei (City University of Hong Kong)
Long-Kai Huang (Nanyang Technological University)
Ding Xue (Tencent AI Lab)
Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
Zhenhui (Jessie) Li (Penn State University)
More from the Same Authors
-
2021 Workshop: 5th Workshop on Meta-Learning »
Erin Grant · Fábio Ferreira · Frank Hutter · Jonathan Schwarz · Joaquin Vanschoren · Huaxiu Yao -
2021 Poster: Not All Low-Pass Filters are Robust in Graph Convolutional Networks »
Heng Chang · Yu Rong · Tingyang Xu · Yatao Bian · Shiji Zhou · Xin Wang · Junzhou Huang · Wenwu Zhu -
2021 Poster: Meta-learning with an Adaptive Task Scheduler »
Huaxiu Yao · Yu Wang · Ying Wei · Peilin Zhao · Mehrdad Mahdavi · Defu Lian · Chelsea Finn -
2020 Poster: Revisiting Parameter Sharing for Automatic Neural Channel Number Search »
Jiaxing Wang · Haoli Bai · Jiaxiang Wu · Xupeng Shi · Junzhou Huang · Irwin King · Michael R Lyu · Jian Cheng -
2020 Poster: Online Structured Meta-learning »
Huaxiu Yao · Yingbo Zhou · Mehrdad Mahdavi · Zhenhui (Jessie) Li · Richard Socher · Caiming Xiong -
2020 Poster: Dirichlet Graph Variational Autoencoder »
Jia Li · Jianwei Yu · Jiajin Li · Honglei Zhang · Kangfei Zhao · Yu Rong · Hong Cheng · Junzhou Huang -
2020 Poster: RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist »
Chaochao Yan · Qianggang Ding · Peilin Zhao · Shuangjia Zheng · JINYU YANG · Yang Yu · Junzhou Huang -
2020 Spotlight: RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist »
Chaochao Yan · Qianggang Ding · Peilin Zhao · Shuangjia Zheng · JINYU YANG · Yang Yu · Junzhou Huang -
2020 Poster: Self-Supervised Graph Transformer on Large-Scale Molecular Data »
Yu Rong · Yatao Bian · Tingyang Xu · Weiyang Xie · Ying Wei · Wenbing Huang · Junzhou Huang -
2020 Poster: Deep Multimodal Fusion by Channel Exchanging »
Yikai Wang · Wenbing Huang · Fuchun Sun · Tingyang Xu · Yu Rong · Junzhou Huang -
2020 Poster: Adversarial Sparse Transformer for Time Series Forecasting »
Sifan Wu · Xi Xiao · Qianggang Ding · Peilin Zhao · Ying Wei · Junzhou Huang -
2019 Poster: Hyperparameter Learning via Distributional Transfer »
Ho Chung Law · Peilin Zhao · Leung Sing Chan · Junzhou Huang · Dino Sejdinovic -
2019 Poster: DTWNet: a Dynamic Time Warping Network »
Xingyu Cai · Tingyang Xu · Jinfeng Yi · Junzhou Huang · Sanguthevar Rajasekaran -
2019 Poster: NAT: Neural Architecture Transformer for Accurate and Compact Architectures »
Yong Guo · Yin Zheng · Mingkui Tan · Qi Chen · Jian Chen · Peilin Zhao · Junzhou Huang -
2019 Poster: Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement »
Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan -
2019 Spotlight: Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement »
Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan -
2018 Poster: Discrimination-aware Channel Pruning for Deep Neural Networks »
Zhuangwei Zhuang · Mingkui Tan · Bohan Zhuang · Jing Liu · Yong Guo · Qingyao Wu · Junzhou Huang · Jinhui Zhu -
2018 Poster: Weakly Supervised Dense Event Captioning in Videos »
Xin Wang · Wenbing Huang · Chuang Gan · Jingdong Wang · Wenwu Zhu · Junzhou Huang -
2018 Poster: Adaptive Sampling Towards Fast Graph Representation Learning »
Wenbing Huang · Tong Zhang · Yu Rong · Junzhou Huang -
2017 Poster: Efficient Optimization for Linear Dynamical Systems with Applications to Clustering and Sparse Coding »
Wenbing Huang · Mehrtash Harandi · Tong Zhang · Lijie Fan · Fuchun Sun · Junzhou Huang -
2012 Poster: Compressive Sensing MRI with Wavelet Tree Sparsity »
Chen Chen · Junzhou Huang