Timezone: »

Decentralized Q-learning in Zero-sum Markov Games
Muhammed Sayin · Kaiqing Zhang · David Leslie · Tamer Basar · Asuman Ozdaglar

Thu Dec 09 12:30 AM -- 02:00 AM (PST) @ None #None

We study multi-agent reinforcement learning (MARL) in infinite-horizon discounted zero-sum Markov games. We focus on the practical but challenging setting of decentralized MARL, where agents make decisions without coordination by a centralized controller, but only based on their own payoffs and local actions executed. The agents need not observe the opponent's actions or payoffs, possibly being even oblivious to the presence of the opponent, nor be aware of the zero-sum structure of the underlying game, a setting also referred to as radically uncoupled in the literature of learning in games. In this paper, we develop a radically uncoupled Q-learning dynamics that is both rational and convergent: the learning dynamics converges to the best response to the opponent's strategy when the opponent follows an asymptotically stationary strategy; when both agents adopt the learning dynamics, they converge to the Nash equilibrium of the game. The key challenge in this decentralized setting is the non-stationarity of the environment from an agent's perspective, since both her own payoffs and the system evolution depend on the actions of other agents, and each agent adapts her policies simultaneously and independently. To address this issue, we develop a two-timescale learning dynamics where each agent updates her local Q-function and value function estimates concurrently, with the latter happening at a slower timescale.

Author Information

Muhammed Sayin (Bilkent University)
Kaiqing Zhang (University of Illinois at Urbana-Champaign (UIUC))
David Leslie (Lancaster University)
Tamer Basar (University of Illinois at Urbana-Champaign)
Asuman Ozdaglar (Massachusetts Institute of Technology)

Asu Ozdaglar received the B.S. degree in electrical engineering from the Middle East Technical University, Ankara, Turkey, in 1996, and the S.M. and the Ph.D. degrees in electrical engineering and computer science from the Massachusetts Institute of Technology, Cambridge, in 1998 and 2003, respectively. She is currently a professor in the Electrical Engineering and Computer Science Department at the Massachusetts Institute of Technology. She is also the director of the Laboratory for Information and Decision Systems. Her research expertise includes optimization theory, with emphasis on nonlinear programming and convex analysis, game theory, with applications in communication, social, and economic networks, distributed optimization and control, and network analysis with special emphasis on contagious processes, systemic risk and dynamic control. Professor Ozdaglar is the recipient of a Microsoft fellowship, the MIT Graduate Student Council Teaching award, the NSF Career award, the 2008 Donald P. Eckman award of the American Automatic Control Council, the Class of 1943 Career Development Chair, the inaugural Steven and Renee Innovation Fellowship, and the 2014 Spira teaching award. She served on the Board of Governors of the Control System Society in 2010 and was an associate editor for IEEE Transactions on Automatic Control. She is currently the area co-editor for a new area for the journal Operations Research, entitled "Games, Information and Networks. She is the co-author of the book entitled “Convex Analysis and Optimization” (Athena Scientific, 2003).

More from the Same Authors