Timezone: »
We consider the problem of online learning in the presence of distribution shifts that occur at an unknown rate and of unknown intensity. We derive a new Bayesian online inference approach to simultaneously infer these distribution shifts and adapt the model to the detected changes by integrating ideas from change point detection, switching dynamical systems, and Bayesian online learning. Using a binary ‘change variable,’ we construct an informative prior such that--if a change is detected--the model partially erases the information of past model updates by tempering to facilitate adaptation to the new data distribution. Furthermore, the approach uses beam search to track multiple change-point hypotheses and selects the most probable one in hindsight. Our proposed method is model-agnostic, applicable in both supervised and unsupervised learning settings, suitable for an environment of concept drifts or covariate drifts, and yields improvements over state-of-the-art Bayesian online learning approaches.
Author Information
Aodong Li (university of california irvine)
Alex Boyd (UC Irvine)
Padhraic Smyth (University of California, Irvine)
Stephan Mandt (University of California, Irvine)
More from the Same Authors
-
2021 : Analyzing High-Resolution Clouds and Convection using Multi-Channel VAEs »
Harshini Mangipudi · Griffin Mooers · Mike Pritchard · Tom Beucler · Stephan Mandt -
2021 : Structured Stochastic Gradient MCMC: a hybrid VI and MCMC approach »
Antonios Alexos · Alex Boyd · Stephan Mandt -
2022 : Probabilistic Querying of Continuous-Time Sequential Events »
Alex Boyd · Yuxin Chang · Stephan Mandt · Padhraic Smyth -
2022 : An Unsupervised Learning Perspective on the Dynamic Contribution to Extreme Precipitation Changes »
Griffin Mooers · Tom Beucler · Mike Pritchard · Stephan Mandt -
2022 Panel: Panel 5B-4: Predictive Querying for… & On the difficulty… »
Alex Boyd · Jonas Mikhaeil -
2022 : Q & A »
Karen Ullrich · Yibo Yang · Stephan Mandt -
2022 Tutorial: Data Compression with Machine Learning »
Karen Ullrich · Yibo Yang · Stephan Mandt -
2022 : Tutorial part 1 »
Yibo Yang · Karen Ullrich · Stephan Mandt -
2022 Poster: Predictive Querying for Autoregressive Neural Sequence Models »
Alex Boyd · Samuel Showalter · Stephan Mandt · Padhraic Smyth -
2021 Poster: Combining Human Predictions with Model Probabilities via Confusion Matrices and Calibration »
Gavin Kerrigan · Padhraic Smyth · Mark Steyvers -
2020 : Q/A and Discussion for ML Theory Session »
Karthik Kashinath · Mayur Mudigonda · Stephan Mandt · Rose Yu -
2020 : Stephan Mandt »
Stephan Mandt -
2020 Poster: Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference »
Disi Ji · Padhraic Smyth · Mark Steyvers -
2020 Poster: User-Dependent Neural Sequence Models for Continuous-Time Event Data »
Alex Boyd · Robert Bamler · Stephan Mandt · Padhraic Smyth -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2016 Workshop: Towards an Artificial Intelligence for Data Science »
Charles Sutton · James Geddes · Zoubin Ghahramani · Padhraic Smyth · Chris Williams -
2012 Workshop: Algorithmic and Statistical Approaches for Large Social Network Data Sets »
Michael Goodrich · Pavel N Krivitsky · David M Mount · Christopher DuBois · Padhraic Smyth -
2011 Oral: Continuous-Time Regression Models for Longitudinal Networks »
Duy Q Vu · Arthur Asuncion · David Hunter · Padhraic Smyth -
2011 Poster: Continuous-Time Regression Models for Longitudinal Networks »
Duy Q Vu · Arthur Asuncion · David Hunter · Padhraic Smyth -
2010 Spotlight: Learning concept graphs from text with stick-breaking priors »
America Chambers · Padhraic Smyth · Mark Steyvers -
2010 Poster: Learning concept graphs from text with stick-breaking priors »
America Chambers · Padhraic Smyth · Mark Steyvers -
2009 Poster: Particle-based Variational Inference for Continuous Systems »
Alexander Ihler · Andrew Frank · Padhraic Smyth -
2008 Poster: Asynchronous Distributed Learning of Topic Models »
Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Spotlight: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Poster: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2006 Poster: Modeling General and Specific Aspects of Documents with a Probabilistic Topic Model »
Chaitanya Chemudugunta · Padhraic Smyth · Mark Steyvers -
2006 Poster: Learning Time-Intensity Profiles of Human Activity using Non-Parametric Bayesian Models »
Alexander Ihler · Padhraic Smyth -
2006 Poster: Hierarchical Dirichlet Processes with Random Effects »
Seyoung Kim · Padhraic Smyth