Timezone: »
Convolutional neural networks (CNNs) have so far been the de-facto model for visual data. Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks. This raises a central question: how are Vision Transformers solving these tasks? Are they acting like convolutional networks, or learning entirely different visual representations? Analyzing the internal representation structure of ViTs and CNNs on image classification benchmarks, we find striking differences between the two architectures, such as ViT having more uniform representations across all layers. We explore how these differences arise, finding crucial roles played by self-attention, which enables early aggregation of global information, and ViT residual connections, which strongly propagate features from lower to higher layers. We study the ramifications for spatial localization, demonstrating ViTs successfully preserve input spatial information, with noticeable effects from different classification methods. Finally, we study the effect of (pretraining) dataset scale on intermediate features and transfer learning, and conclude with a discussion on connections to new architectures such as the MLP-Mixer.
Author Information
Maithra Raghu (Google Brain)
Thomas Unterthiner (Google Research)
Simon Kornblith (Google Brain)
Chiyuan Zhang (Google Research)
Alexey Dosovitskiy (Inceptive)
More from the Same Authors
-
2021 : Understanding and Improving Robustness of VisionTransformers through patch-based NegativeAugmentation »
Yao Qin · Chiyuan Zhang · Ting Chen · Balaji Lakshminarayanan · Alex Beutel · Xuezhi Wang -
2022 : Human alignment of neural network representations »
Lukas Muttenthaler · Lorenz Linhardt · Jonas Dippel · Robert Vandermeulen · Simon Kornblith -
2022 Poster: Patching open-vocabulary models by interpolating weights »
Gabriel Ilharco · Mitchell Wortsman · Samir Yitzhak Gadre · Shuran Song · Hannaneh Hajishirzi · Simon Kornblith · Ali Farhadi · Ludwig Schmidt -
2022 Poster: Understanding and Improving Robustness of Vision Transformers through Patch-based Negative Augmentation »
Yao Qin · Chiyuan Zhang · Ting Chen · Balaji Lakshminarayanan · Alex Beutel · Xuezhi Wang -
2022 Poster: The Privacy Onion Effect: Memorization is Relative »
Nicholas Carlini · Matthew Jagielski · Chiyuan Zhang · Nicolas Papernot · Andreas Terzis · Florian Tramer -
2022 Poster: Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures »
Emmanuel Abbe · Samy Bengio · Elisabetta Cornacchia · Jon Kleinberg · Aryo Lotfi · Maithra Raghu · Chiyuan Zhang -
2021 : Panel II: Machine decisions »
Anca Dragan · Karen Levy · Himabindu Lakkaraju · Ariel Rosenfeld · Maithra Raghu · Irene Y Chen -
2021 Poster: Why Do Better Loss Functions Lead to Less Transferable Features? »
Simon Kornblith · Ting Chen · Honglak Lee · Mohammad Norouzi -
2021 Poster: Generalized Shape Metrics on Neural Representations »
Alex H Williams · Erin Kunz · Simon Kornblith · Scott Linderman -
2021 Poster: Meta-learning to Improve Pre-training »
Aniruddh Raghu · Jonathan Lorraine · Simon Kornblith · Matthew McDermott · David Duvenaud -
2021 Poster: Deep Learning with Label Differential Privacy »
Badih Ghazi · Noah Golowich · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang -
2021 Poster: MLP-Mixer: An all-MLP Architecture for Vision »
Ilya Tolstikhin · Neil Houlsby · Alexander Kolesnikov · Lucas Beyer · Xiaohua Zhai · Thomas Unterthiner · Jessica Yung · Andreas Steiner · Daniel Keysers · Jakob Uszkoreit · Mario Lucic · Alexey Dosovitskiy -
2020 Poster: What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation »
Vitaly Feldman · Chiyuan Zhang -
2020 Spotlight: What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation »
Vitaly Feldman · Chiyuan Zhang -
2020 Poster: Object-Centric Learning with Slot Attention »
Francesco Locatello · Dirk Weissenborn · Thomas Unterthiner · Aravindh Mahendran · Georg Heigold · Jakob Uszkoreit · Alexey Dosovitskiy · Thomas Kipf -
2020 Spotlight: Object-Centric Learning with Slot Attention »
Francesco Locatello · Dirk Weissenborn · Thomas Unterthiner · Aravindh Mahendran · Georg Heigold · Jakob Uszkoreit · Alexey Dosovitskiy · Thomas Kipf -
2020 Poster: The Origins and Prevalence of Texture Bias in Convolutional Neural Networks »
Katherine L. Hermann · Ting Chen · Simon Kornblith -
2020 Oral: The Origins and Prevalence of Texture Bias in Convolutional Neural Networks »
Katherine L. Hermann · Ting Chen · Simon Kornblith -
2020 Poster: Big Self-Supervised Models are Strong Semi-Supervised Learners »
Ting Chen · Simon Kornblith · Kevin Swersky · Mohammad Norouzi · Geoffrey E Hinton -
2020 Poster: What is being transferred in transfer learning? »
Behnam Neyshabur · Hanie Sedghi · Chiyuan Zhang -
2019 : Poster Session »
Ethan Harris · Tom White · Oh Hyeon Choung · Takashi Shinozaki · Dipan Pal · Katherine L. Hermann · Judy Borowski · Camilo Fosco · Chaz Firestone · Vijay Veerabadran · Benjamin Lahner · Chaitanya Ryali · Fenil Doshi · Pulkit Singh · Sharon Zhou · Michel Besserve · Michael Chang · Anelise Newman · Mahesan Niranjan · Jonathon Hare · Daniela Mihai · Marios Savvides · Simon Kornblith · Christina M Funke · Aude Oliva · Virginia de Sa · Dmitry Krotov · Colin Conwell · George Alvarez · Alex Kolchinski · Shengjia Zhao · Mitchell Gordon · Michael Bernstein · Stefano Ermon · Arash Mehrjou · Bernhard Schölkopf · John Co-Reyes · Michael Janner · Jiajun Wu · Josh Tenenbaum · Sergey Levine · Yalda Mohsenzadeh · Zhenglong Zhou -
2019 : Poster Session I »
Shuangjia Zheng · Arnav Kapur · Umar Asif · Eyal Rozenberg · Cyprien Gilet · Oleksii Sidorov · Yogesh Kumar · Tom Van Steenkiste · William Boag · David Ouyang · Paul Jaeger · Sheng Liu · Aparna Balagopalan · Deepta Rajan · Marta Skreta · Nikhil Pattisapu · Jann Goschenhofer · Viraj Prabhu · Di Jin · Laura-Jayne Gardiner · Irene Li · sriram kumar · Qiyuan Hu · Mehul Motani · Justin Lovelace · Usman Roshan · Lucy Lu Wang · Ilya Valmianski · Hyeonwoo Lee · Sunil Mallya · Elias Chaibub Neto · Jonas Kemp · Marie Charpignon · Amber Nigam · Wei-Hung Weng · Sabri Boughorbel · Alexis Bellot · Lovedeep Gondara · Haoran Zhang · Taha Bahadori · John Zech · Rulin Shao · Edward Choi · Laleh Seyyed-Kalantari · Emily Aiken · Ioana Bica · Yiqiu Shen · Kieran Chin-Cheong · Subhrajit Roy · Ioana Baldini · So Yeon Min · Dirk Deschrijver · Pekka Marttinen · Damian Pascual Ortiz · Supriya Nagesh · Niklas Rindtorff · Andriy Mulyar · Katharina Hoebel · Martha Shaka · Pierre Machart · Leon Gatys · Nathan Ng · Matthias Hüser · Devin Taylor · Dennis Barbour · Natalia Martinez · Clara McCreery · Benjamin Eyre · Vivek Natarajan · Ren Yi · Ruibin Ma · Chirag Nagpal · Nan Du · Chufan Gao · Anup Tuladhar · Sam Shleifer · Jason Ren · Pouria Mashouri · Ming Yang Lu · Farideh Bagherzadeh-Khiabani · Olivia Choudhury · Maithra Raghu · Scott Fleming · Mika Jain · GUO YANG · Alena Harley · Stephen Pfohl · Elisabeth Rumetshofer · Alex Fedorov · Saloni Dash · Jacob Pfau · Sabina Tomkins · Colin Targonski · Michael Brudno · Xinyu Li · Yiyang Yu · Nisarg Patel -
2019 : Spotlight Paper Talks »
Arnav Kapur · Maithra Raghu · Xinyu Li -
2019 Poster: Transfusion: Understanding Transfer Learning for Medical Imaging »
Maithra Raghu · Chiyuan Zhang · Jon Kleinberg · Samy Bengio -
2019 Poster: When does label smoothing help? »
Rafael Müller · Simon Kornblith · Geoffrey E Hinton -
2019 Spotlight: When does label smoothing help? »
Rafael Müller · Simon Kornblith · Geoffrey E Hinton -
2019 Poster: Saccader: Improving Accuracy of Hard Attention Models for Vision »
Gamaleldin Elsayed · Simon Kornblith · Quoc V Le -
2018 : Poster Session I »
Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang -
2018 Poster: Insights on representational similarity in neural networks with canonical correlation »
Ari Morcos · Maithra Raghu · Samy Bengio -
2018 Poster: Unsupervised Learning of Shape and Pose with Differentiable Point Clouds »
Eldar Insafutdinov · Alexey Dosovitskiy -
2017 : Self-Normalizing Neural Networks »
Thomas Unterthiner -
2017 Workshop: Deep Learning: Bridging Theory and Practice »
Sanjeev Arora · Maithra Raghu · Russ Salakhutdinov · Ludwig Schmidt · Oriol Vinyals -
2017 : Poster session 1 »
Van-Doan Nguyen · Stephan Eismann · Haozhen Wu · Garrett Goh · Kristina Preuer · Thomas Unterthiner · Matthew Ragoza · Tien-Lam PHAM · Günter Klambauer · Andrea Rocchetto · Maxwell Hutchinson · Qian Yang · Rafael Gomez-Bombarelli · Sheshera Mysore · Brooke Husic · Ryan-Rhys Griffiths · Masashi Tsubaki · Emma Strubell · Philippe Schwaller · Théophile Gaudin · Michael Brenner · Li Li -
2017 Spotlight: Self-Normalizing Neural Networks »
Günter Klambauer · Thomas Unterthiner · Andreas Mayr · Sepp Hochreiter -
2017 Poster: Self-Normalizing Neural Networks »
Günter Klambauer · Thomas Unterthiner · Andreas Mayr · Sepp Hochreiter -
2017 Poster: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium »
Martin Heusel · Hubert Ramsauer · Thomas Unterthiner · Bernhard Nessler · Sepp Hochreiter -
2017 Poster: SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability »
Maithra Raghu · Justin Gilmer · Jason Yosinski · Jascha Sohl-Dickstein -
2016 Poster: Exponential expressivity in deep neural networks through transient chaos »
Ben Poole · Subhaneil Lahiri · Maithra Raghu · Jascha Sohl-Dickstein · Surya Ganguli -
2015 Poster: Rectified Factor Networks »
Djork-Arné Clevert · Andreas Mayr · Thomas Unterthiner · Sepp Hochreiter -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto