Timezone: »
We introduce a simple yet effective framework for improving the robustness of learning algorithms against image corruptions for autonomous driving. These corruptions can occur due to both internal (e.g., sensor noises and hardware abnormalities) and external factors (e.g., lighting, weather, visibility, and other environmental effects). Using sensitivity analysis with FID-based parameterization, we propose a novel algorithm exploiting basis perturbations to improve the overall performance of autonomous steering and other image processing tasks, such as classification and detection, for self-driving cars. Our model not only improves the performance on the original dataset, but also achieves significant performance improvement on datasets with multiple and unseen perturbations, up to 87% and 77%, respectively. A comparison between our approach and other SOTA techniques confirms the effectiveness of our technique in improving the robustness of neural network training for learning-based steering and other image processing tasks.
Author Information
Yu Shen (University of Maryland, College Park)
Laura Zheng (University of Maryland, College Park)
Manli Shu (University of Maryland, College Park)
Weizi Li (University of Memphis)
Tom Goldstein (Rice University)
Ming Lin (University of Maryland - College Park)
Ming C. Lin is currently the Elizabeth Stevinson Iribe Chair of Computer Science at the University of Maryland College Park and John R. & Louise S. Parker Distinguished Professor Emerita of Computer Science at the University of North Carolina (UNC), Chapel Hill. She was also an Honorary Visiting Chair Professor at Tsinghua University in China and at University of Technology Sydney in Australia. She obtained her B.S., M.S., and Ph.D. in Electrical Engineering and Computer Science from the University of California, Berkeley. She received several honors and awards, including the NSF Young Faculty Career Award in 1995, Honda Research Initiation Award in 1997, UNC/IBM Junior Faculty Development Award in 1999, UNC Hettleman Award for Scholarly Achievements in 2003, Beverly W. Long Distinguished Professorship 2007-2010, UNC WOWS Scholar 2009-2011, IEEE VGTC Virtual Reality Technical Achievement Award in 2010, and many best paper awards at international conferences. She is a Fellow of ACM, IEEE, and Eurographics.
More from the Same Authors
-
2021 : A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs »
Mucong Ding · Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Micah Goldblum · David P Wipf · Furong Huang · Tom Goldstein -
2021 : Diurnal or Nocturnal? Federated Learning from Periodically Shifting Distributions »
Chen Zhu · Zheng Xu · Mingqing Chen · Jakub Konečný · Andrew S Hard · Tom Goldstein -
2021 : Learning Revenue-Maximizing Auctions With Differentiable Matching »
Michael Curry · Uro Lyi · Tom Goldstein · John P Dickerson -
2021 : Learning Revenue-Maximizing Auctions With Differentiable Matching »
Michael Curry · Uro Lyi · Tom Goldstein · John P Dickerson -
2022 Spotlight: Differentiable Analog Quantum Computing for Optimization and Control »
Jiaqi Leng · Yuxiang Peng · Yi-Ling Qiao · Ming Lin · Xiaodi Wu -
2022 Poster: Where do Models go Wrong? Parameter-Space Saliency Maps for Explainability »
Roman Levin · Manli Shu · Eitan Borgnia · Furong Huang · Micah Goldblum · Tom Goldstein -
2022 Poster: Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models »
Manli Shu · Weili Nie · De-An Huang · Zhiding Yu · Tom Goldstein · Anima Anandkumar · Chaowei Xiao -
2022 Poster: Differentiable Analog Quantum Computing for Optimization and Control »
Jiaqi Leng · Yuxiang Peng · Yi-Ling Qiao · Ming Lin · Xiaodi Wu -
2022 Poster: NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos »
Yi-Ling Qiao · Alexander Gao · Ming Lin -
2021 : A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs »
Mucong Ding · Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Micah Goldblum · David P Wipf · Furong Huang · Tom Goldstein -
2021 Poster: Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks »
Avi Schwarzschild · Eitan Borgnia · Arjun Gupta · Furong Huang · Uzi Vishkin · Micah Goldblum · Tom Goldstein -
2021 Poster: VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization »
Mucong Ding · Kezhi Kong · Jingling Li · Chen Zhu · John Dickerson · Furong Huang · Tom Goldstein -
2021 Poster: GradInit: Learning to Initialize Neural Networks for Stable and Efficient Training »
Chen Zhu · Renkun Ni · Zheng Xu · Kezhi Kong · W. Ronny Huang · Tom Goldstein -
2021 Poster: Differentiable Simulation of Soft Multi-body Systems »
Yi-Ling Qiao · Junbang Liang · Vladlen Koltun · Ming Lin -
2021 Poster: Adversarial Examples Make Strong Poisons »
Liam Fowl · Micah Goldblum · Ping-yeh Chiang · Jonas Geiping · Wojciech Czaja · Tom Goldstein -
2021 Poster: Center Smoothing: Certified Robustness for Networks with Structured Outputs »
Aounon Kumar · Tom Goldstein -
2021 Poster: Encoding Robustness to Image Style via Adversarial Feature Perturbations »
Manli Shu · Zuxuan Wu · Micah Goldblum · Tom Goldstein -
2021 Poster: Long-Short Transformer: Efficient Transformers for Language and Vision »
Chen Zhu · Wei Ping · Chaowei Xiao · Mohammad Shoeybi · Tom Goldstein · Anima Anandkumar · Bryan Catanzaro -
2020 : Ming Lin »
Ming Lin -
2019 Poster: Differentiable Cloth Simulation for Inverse Problems »
Junbang Liang · Ming Lin · Vladlen Koltun