Timezone: »

Posterior Collapse and Latent Variable Non-identifiability
Yixin Wang · David Blei · John Cunningham

Wed Dec 08 04:30 PM -- 06:00 PM (PST) @ Virtual

Variational autoencoders model high-dimensional data by positinglow-dimensional latent variables that are mapped through a flexibledistribution parametrized by a neural network. Unfortunately,variational autoencoders often suffer from posterior collapse: theposterior of the latent variables is equal to its prior, rendering thevariational autoencoder useless as a means to produce meaningfulrepresentations. Existing approaches to posterior collapse oftenattribute it to the use of neural networks or optimization issues dueto variational approximation. In this paper, we consider posteriorcollapse as a problem of latent variable non-identifiability. We provethat the posterior collapses if and only if the latent variables arenon-identifiable in the generative model. This fact implies thatposterior collapse is not a phenomenon specific to the use of flexibledistributions or approximate inference. Rather, it can occur inclassical probabilistic models even with exact inference, which wealso demonstrate. Based on these results, we propose a class oflatent-identifiable variational autoencoders, deep generative modelswhich enforce identifiability without sacrificing flexibility. Thismodel class resolves the problem of latent variablenon-identifiability by leveraging bijective Brenier maps andparameterizing them with input convex neural networks, without specialvariational inference objectives or optimization tricks. Acrosssynthetic and real datasets, latent-identifiable variationalautoencoders outperform existing methods in mitigating posteriorcollapse and providing meaningful representations of the data.

Author Information

Yixin Wang (Columbia University)
David Blei (Columbia University)

David Blei is a Professor of Statistics and Computer Science at Columbia University, and a member of the Columbia Data Science Institute. His research is in statistical machine learning, involving probabilistic topic models, Bayesian nonparametric methods, and approximate posterior inference algorithms for massive data. He works on a variety of applications, including text, images, music, social networks, user behavior, and scientific data. David has received several awards for his research, including a Sloan Fellowship (2010), Office of Naval Research Young Investigator Award (2011), Presidential Early Career Award for Scientists and Engineers (2011), Blavatnik Faculty Award (2013), and ACM-Infosys Foundation Award (2013). He is a fellow of the ACM.

John Cunningham (Columbia University)

More from the Same Authors