Timezone: »
We present a new algorithm for the approximate near neighbor problem that combines classical ideas from group testing with locality-sensitive hashing (LSH). We reduce the near neighbor search problem to a group testing problem by designating neighbors as "positives," non-neighbors as "negatives," and approximate membership queries as group tests. We instantiate this framework using distance-sensitive Bloom Filters to Identify Near-Neighbor Groups (FLINNG). We prove that FLINNG has sub-linear query time and show that our algorithm comes with a variety of practical advantages. For example, FLINNG can be constructed in a single pass through the data, consists entirely of efficient integer operations, and does not require any distance computations. We conduct large-scale experiments on high-dimensional search tasks such as genome search, URL similarity search, and embedding search over the massive YFCC100M dataset. In our comparison with leading algorithms such as HNSW and FAISS, we find that FLINNG can provide up to a 10x query speedup with substantially smaller indexing time and memory.
Author Information
Joshua Engels (Rice University)
Benjamin Coleman (Rice University)
Anshumali Shrivastava (Rice University / ThirdAI Corp.)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Practical Near Neighbor Search via Group Testing »
Fri. Dec 10th 04:30 -- 06:00 PM Room
More from the Same Authors
-
2021 : PISTACHIO: Patch Importance Sampling To Accelerate CNNs via a Hash Index Optimizer »
Zhaozhuo Xu · Anshumali Shrivastava -
2022 : Adaptive Sparse Federated Learning in Large Output Spaces via Hashing »
Zhaozhuo Xu · Luyang Liu · Zheng Xu · Anshumali Shrivastava -
2022 Poster: The trade-offs of model size in large recommendation models : 100GB to 10MB Criteo-tb DLRM model »
Aditya Desai · Anshumali Shrivastava -
2022 Poster: Retaining Knowledge for Learning with Dynamic Definition »
Zichang Liu · Benjamin Coleman · Tianyi Zhang · Anshumali Shrivastava -
2022 Poster: Graph Reordering for Cache-Efficient Near Neighbor Search »
Benjamin Coleman · Santiago Segarra · Alexander Smola · Anshumali Shrivastava -
2021 Poster: Breaking the Linear Iteration Cost Barrier for Some Well-known Conditional Gradient Methods Using MaxIP Data-structures »
Zhaozhuo Xu · Zhao Song · Anshumali Shrivastava -
2021 Poster: Locality Sensitive Teaching »
Zhaozhuo Xu · Beidi Chen · Chaojian Li · Weiyang Liu · Le Song · Yingyan Lin · Anshumali Shrivastava -
2021 Poster: Raw Nav-merge Seismic Data to Subsurface Properties with MLP based Multi-Modal Information Unscrambler »
Aditya Desai · Zhaozhuo Xu · Menal Gupta · Anu Chandran · Antoine Vial-Aussavy · Anshumali Shrivastava -
2020 Poster: Adaptive Learned Bloom Filter (Ada-BF): Efficient Utilization of the Classifier with Application to Real-Time Information Filtering on the Web »
Zhenwei Dai · Anshumali Shrivastava -
2020 Session: Orals & Spotlights Track 03: Language/Audio Applications »
Anshumali Shrivastava · Dilek Hakkani-Tur -
2019 Poster: Fast and Accurate Stochastic Gradient Estimation »
Beidi Chen · Yingchen Xu · Anshumali Shrivastava -
2019 Poster: Extreme Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon Search with 50M Products »
Tharun Kumar Reddy Medini · Qixuan Huang · Yiqiu Wang · Vijai Mohan · Anshumali Shrivastava -
2018 Poster: Topkapi: Parallel and Fast Sketches for Finding Top-K Frequent Elements »
Ankush Mandal · He Jiang · Anshumali Shrivastava · Vivek Sarkar -
2016 Poster: Simple and Efficient Weighted Minwise Hashing »
Anshumali Shrivastava -
2014 Poster: Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) »
Anshumali Shrivastava · Ping Li -
2014 Oral: Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) »
Anshumali Shrivastava · Ping Li -
2013 Poster: Beyond Pairwise: Provably Fast Algorithms for Approximate $k$-Way Similarity Search »
Anshumali Shrivastava · Ping Li -
2011 Poster: Hashing Algorithms for Large-Scale Learning »
Ping Li · Anshumali Shrivastava · Joshua L Moore · Arnd C König