Timezone: »
Poster
Delayed Gradient Averaging: Tolerate the Communication Latency for Federated Learning
Ligeng Zhu · Hongzhou Lin · Yao Lu · Yujun Lin · Song Han
Federated Learning is an emerging direction in distributed machine learning that en-ables jointly training a model without sharing the data. Since the data is distributed across many edge devices through wireless / long-distance connections, federated learning suffers from inevitable high communication latency. However, the latency issues are undermined in the current literature [15] and existing approaches suchas FedAvg [27] become less efficient when the latency increases. To over comethe problem, we propose \textbf{D}elayed \textbf{G}radient \textbf{A}veraging (DGA), which delays the averaging step to improve efficiency and allows local computation in parallel tocommunication. We theoretically prove that DGA attains a similar convergence rate as FedAvg, and empirically show that our algorithm can tolerate high network latency without compromising accuracy. Specifically, we benchmark the training speed on various vision (CIFAR, ImageNet) and language tasks (Shakespeare),with both IID and non-IID partitions, and show DGA can bring 2.55$\times$ to 4.07$\times$ speedup. Moreover, we built a 16-node Raspberry Pi cluster and show that DGA can consistently speed up real-world federated learning applications.
Author Information
Ligeng Zhu (MIT)
Hongzhou Lin (MIT)
Yao Lu (Google)
Yujun Lin (MIT)
Song Han (MIT)
More from the Same Authors
-
2021 : Demonstration-Guided Q-Learning »
Ikechukwu Uchendu · Ted Xiao · Yao Lu · Mengyuan Yan · Karol Hausman -
2023 Poster: Grounded Decoding: Guiding Text Generation with Grounded Models for Robot Control »
Wenlong Huang · Fei Xia · Dhruv Shah · Danny Driess · Andy Zeng · Yao Lu · Pete Florence · Igor Mordatch · Sergey Levine · Karol Hausman · brian ichter -
2023 Poster: DriveMax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous Driving Research »
Cole Gulino · Justin Fu · Wenjie Luo · George Tucker · Eli Bronstein · Yiren Lu · Jean Harb · Xinlei Pan · Yan Wang · Xiangyu Chen · John Co-Reyes · Rishabh Agarwal · Rebecca Roelofs · Yao Lu · Nico Montali · Paul Mougin · Zoey Yang · Brandyn White · Aleksandra Faust · Rowan McAllister · Dragomir Anguelov · Benjamin Sapp -
2022 : SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models »
Song Han -
2022 Poster: Efficient Spatially Sparse Inference for Conditional GANs and Diffusion Models »
Muyang Li · Ji Lin · Chenlin Meng · Stefano Ermon · Song Han · Jun-Yan Zhu -
2022 Poster: On-Device Training Under 256KB Memory »
Ji Lin · Ligeng Zhu · Wei-Ming Chen · Wei-Chen Wang · Chuang Gan · Song Han -
2021 Poster: Memory-efficient Patch-based Inference for Tiny Deep Learning »
Ji Lin · Wei-Ming Chen · Han Cai · Chuang Gan · Song Han -
2020 Poster: MCUNet: Tiny Deep Learning on IoT Devices »
Ji Lin · Wei-Ming Chen · Yujun Lin · john cohn · Chuang Gan · Song Han -
2020 Spotlight: MCUNet: Tiny Deep Learning on IoT Devices »
Ji Lin · Wei-Ming Chen · Yujun Lin · john cohn · Chuang Gan · Song Han -
2020 Poster: Differentiable Augmentation for Data-Efficient GAN Training »
Shengyu Zhao · Zhijian Liu · Ji Lin · Jun-Yan Zhu · Song Han -
2020 Poster: TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning »
Han Cai · Chuang Gan · Ligeng Zhu · Song Han -
2020 Poster: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Spotlight: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2019 : Poster Session 2 »
Hanson Wang · Yujun Lin · Yixiao Duan · Aditya Paliwal · Ameer Haj-Ali · Ryan Marcus · Tom Hope · Qiumin Xu · Nham Le · Yuxiang Sun · Ross Cutler · Vikram Nathan · Min Sun -
2019 : Contributed Talk 4: Neural Hardware Architecture Search »
Yujun Lin -
2019 : Hardware-aware Neural Architecture Design for Small and Fast Models: from 2D to 3D »
Song Han -
2019 : Posters and Coffee »
Sameer Kumar · Tomasz Kornuta · Oleg Bakhteev · Hui Guan · Xiaomeng Dong · Minsik Cho · Sören Laue · Theodoros Vasiloudis · Andreea Anghel · Erik Wijmans · Zeyuan Shang · Oleksii Kuchaiev · Ji Lin · Susan Zhang · Ligeng Zhu · Beidi Chen · Vinu Joseph · Jialin Ding · Jonathan Raiman · Ahnjae Shin · Vithursan Thangarasa · Anush Sankaran · Akhil Mathur · Martino Dazzi · Markus Löning · Darryl Ho · Emanuel Zgraggen · Supun Nakandala · Tomasz Kornuta · Rita Kuznetsova -
2019 Poster: Park: An Open Platform for Learning-Augmented Computer Systems »
Hongzi Mao · Parimarjan Negi · Akshay Narayan · Hanrui Wang · Jiacheng Yang · Haonan Wang · Ryan Marcus · Ravichandra Addanki · Mehrdad Khani Shirkoohi · Songtao He · Vikram Nathan · Frank Cangialosi · Shaileshh Venkatakrishnan · Wei-Hung Weng · Song Han · Tim Kraska · Dr.Mohammad Alizadeh -
2019 Poster: Deep Leakage from Gradients »
Ligeng Zhu · Zhijian Liu · Song Han -
2019 Poster: Point-Voxel CNN for Efficient 3D Deep Learning »
Zhijian Liu · Haotian Tang · Yujun Lin · Song Han -
2019 Spotlight: Point-Voxel CNN for Efficient 3D Deep Learning »
Zhijian Liu · Haotian Tang · Yujun Lin · Song Han -
2018 : Panel disucssion »
Max Welling · Tim Genewein · Edwin Park · Song Han -
2018 : Prof. Song Han »
Song Han -
2018 : Bandwidth efficient deep learning by model compression »
Song Han