Timezone: »
Oral
Learning Treatment Effects in Panels with General Intervention Patterns
Vivek Farias · Andrew Li · Tianyi Peng
The problem of causal inference with panel data is a central econometric question. The following is a fundamental version of this problem: Let $M^*$ be a low rank matrix and $E$ be a zero-mean noise matrix. For a `treatment' matrix $Z$ with entries in $\{0,1\}$ we observe the matrix $O$ with entries $O_{ij} := M^*_{ij} + E_{ij} + \mathcal{T}_{ij} Z_{ij}$ where $\mathcal{T}_{ij} $ are unknown, heterogenous treatment effects. The problem requires we estimate the average treatment effect $\tau^* := \sum_{ij} \mathcal{T}_{ij} Z_{ij} / \sum_{ij} Z_{ij}$. The synthetic control paradigm provides an approach to estimating $\tau^*$ when $Z$ places support on a single row. This paper extends that framework to allow rate-optimal recovery of $\tau^*$ for general $Z$, thus broadly expanding its applicability. Our guarantees are the first of their type in this general setting. Computational experiments on synthetic and real-world data show a substantial advantage over competing estimators.
Author Information
Vivek Farias (Massachusetts Institute of Technology)
Andrew Li (Carnegie Mellon University)
Tianyi Peng (Massachusetts Institute of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Learning Treatment Effects in Panels with General Intervention Patterns »
Tue. Dec 7th 04:30 -- 06:00 PM Room
More from the Same Authors
-
2021 Spotlight: Fair Exploration via Axiomatic Bargaining »
Jackie Baek · Vivek Farias -
2021 : Learning Treatment Effects in Panels with General Intervention Patterns »
Vivek Farias · Andrew Li · Tianyi Peng -
2021 : The Limits to Learning a Diffusion Model »
Jackie Baek · Vivek Farias · ANDREEA GEORGESCU · Retsef Levi · Tianyi Peng · Joshua Wilde · Andrew Zheng -
2021 : The Limits to Learning a Diffusion Model »
Jackie Baek · Vivek Farias · ANDREEA GEORGESCU · Retsef Levi · Tianyi Peng · Joshua Wilde · Andrew Zheng -
2022 Spotlight: Dynamic Pricing with Monotonicity Constraint under Unknown Parametric Demand Model »
Su Jia · Andrew Li · R Ravi -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Poster: Markovian Interference in Experiments »
Vivek Farias · Andrew Li · Tianyi Peng · Andrew Zheng -
2022 Poster: Dynamic Pricing with Monotonicity Constraint under Unknown Parametric Demand Model »
Su Jia · Andrew Li · R Ravi -
2021 Poster: Greedy Approximation Algorithms for Active Sequential Hypothesis Testing »
Kyra Gan · Su Jia · Andrew Li -
2021 Poster: Fair Exploration via Axiomatic Bargaining »
Jackie Baek · Vivek Farias -
2016 Poster: Optimistic Gittins Indices »
Eli Gutin · Vivek Farias -
2012 Poster: Non-parametric Approximate Dynamic Programming via the Kernel Method »
Nikhil Bhat · Ciamac C Moallemi · Vivek Farias -
2009 Poster: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Spotlight: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Poster: A Smoothed Approximate Linear Program »
Vijay Desai · Vivek Farias · Ciamac C Moallemi -
2009 Spotlight: A Smoothed Approximate Linear Program »
Vijay Desai · Vivek Farias · Ciamac C Moallemi