Timezone: »
Neural networks lack adversarial robustness, i.e., they are vulnerable to adversarial examples that through small perturbations to inputs cause incorrect predictions. Further, trust is undermined when models give miscalibrated predictions, i.e., the predicted probability is not a good indicator of how much we should trust our model. In this paper, we study the connection between adversarial robustness and calibration and find that the inputs for which the model is sensitive to small perturbations (are easily attacked) are more likely to have poorly calibrated predictions. Based on this insight, we examine if calibration can be improved by addressing those adversarially unrobust inputs. To this end, we propose Adversarial Robustness based Adaptive Label Smoothing (AR-AdaLS) that integrates the correlations of adversarial robustness and calibration into training by adaptively softening labels for an example based on how easily it can be attacked by an adversary. We find that our method, taking the adversarial robustness of the in-distribution data into consideration, leads to better calibration over the model even under distributional shifts. In addition, AR-AdaLS can also be applied to an ensemble model to further improve model calibration.
Author Information
Yao Qin (Google Research)
Xuezhi Wang (Google)
Alex Beutel (Google Research)
Ed Chi (Google Inc.)
d H. Chi is a Principal Scientist at Google, leading several machine learning research teams focusing on neural modeling, inclusive ML, reinforcement learning, and recommendation systems in Google Brain team. He has delivered significant improvements for YouTube, News, Ads, Google Play Store at Google with >325 product launches in the last 6 years. With 39 patents and over 120 research articles, he is also known for research on user behavior in web and social media. Prior to Google, he was the Area Manager and a Principal Scientist at Palo Alto Research Center's Augmented Social Cognition Group, where he led the team in understanding how social systems help groups of people to remember, think and reason. Ed completed his three degrees (B.S., M.S., and Ph.D.) in 6.5 years from University of Minnesota. Recognized as an ACM Distinguished Scientist and elected into the CHI Academy, he recently received a 20-year Test of Time award for research in information visualization. He has been featured and quoted in the press, including the Economist, Time Magazine, LA Times, and the Associated Press. An avid swimmer, photographer and snowboarder in his spare time, he also has a blackbelt in Taekwondo.
More from the Same Authors
-
2021 : Understanding and Improving Robustness of VisionTransformers through patch-based NegativeAugmentation »
Yao Qin · Chiyuan Zhang · Ting Chen · Balaji Lakshminarayanan · Alex Beutel · Xuezhi Wang -
2022 : Towards Companion Recommendation Systems »
Konstantina Christakopoulou · Yuyan Wang · Ed Chi · MINMIN CHEN -
2022 : Striving for data-model efficiency: Identifying data externalities on group performance »
Esther Rolf · Ben Packer · Alex Beutel · Fernando Diaz -
2022 Spotlight: Improving Multi-Task Generalization via Regularizing Spurious Correlation »
Ziniu Hu · Zhe Zhao · Xinyang Yi · Tiansheng Yao · Lichan Hong · Yizhou Sun · Ed Chi -
2022 Poster: Improving Multi-Task Generalization via Regularizing Spurious Correlation »
Ziniu Hu · Zhe Zhao · Xinyang Yi · Tiansheng Yao · Lichan Hong · Yizhou Sun · Ed Chi -
2022 Poster: Understanding and Improving Robustness of Vision Transformers through Patch-based Negative Augmentation »
Yao Qin · Chiyuan Zhang · Ting Chen · Balaji Lakshminarayanan · Alex Beutel · Xuezhi Wang -
2022 Poster: Chain of Thought Prompting Elicits Reasoning in Large Language Models »
Jason Wei · Xuezhi Wang · Dale Schuurmans · Maarten Bosma · brian ichter · Fei Xia · Ed Chi · Quoc V Le · Denny Zhou -
2021 Poster: DSelect-k: Differentiable Selection in the Mixture of Experts with Applications to Multi-Task Learning »
Hussein Hazimeh · Zhe Zhao · Aakanksha Chowdhery · Maheswaran Sathiamoorthy · Yihua Chen · Rahul Mazumder · Lichan Hong · Ed Chi -
2020 : Invited Speaker: Ed Chi »
Ed Chi -
2020 Poster: Fairness without Demographics through Adversarially Reweighted Learning »
Preethi Lahoti · Alex Beutel · Jilin Chen · Kang Lee · Flavien Prost · Nithum Thain · Xuezhi Wang · Ed Chi -
2018 : Poster Session (All Posters) »
Stephen Macke · Hongzi Mao · Caroline Lemieux · Saim Salman · Rishikesh Jha · Hanrui Wang · Shoumik P Palkar · Tianqi Chen · Thomas Pumir · Vaishnav Janardhan · adit bhardwaj · Ed Chi -
2017 : Ed Chi (Google) on Learned Deep Retrieval for Recommenders »
Ed Chi -
2015 Workshop: Machine Learning Systems »
Alex Beutel · Tianqi Chen · Sameer Singh · Elaine Angelino · Markus Weimer · Joseph Gonzalez