Timezone: »
Stabilizing an unknown control system is one of the most fundamental problems in control systems engineering. In this paper, we provide a simple, model-free algorithm for stabilizing fully observed dynamical systems. While model-free methods have become increasingly popular in practice due to their simplicity and flexibility, stabilization via direct policy search has received surprisingly little attention. Our algorithm proceeds by solving a series of discounted LQR problems, where the discount factor is gradually increased. We prove that this method efficiently recovers a stabilizing controller for linear systems, and for smooth, nonlinear systems within a neighborhood of their equilibria. Our approach overcomes a significant limitation of prior work, namely the need for a pre-given stabilizing control policy. We empirically evaluate the effectiveness of our approach on common control benchmarks.
Author Information
Juan Perdomo (University of California, Berkeley)
Jack Umenberger (Uppsala University)
Max Simchowitz (MIT)
More from the Same Authors
-
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2021 : Exploration and Incentives in Reinforcement Learning »
Max Simchowitz · Aleksandrs Slivkins -
2021 : Exploration and Incentives in Reinforcement Learning »
Max Simchowitz · Aleksandrs Slivkins -
2021 : Spotlight 1: Exploration and Incentives in Reinforcement Learning »
Max Simchowitz · Aleksandrs Slivkins -
2021 Poster: Online Control of Unknown Time-Varying Dynamical Systems »
Edgar Minasyan · Paula Gradu · Max Simchowitz · Elad Hazan -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2020 Poster: Stochastic Optimization for Performative Prediction »
Celestine Mendler-Dünner · Juan Perdomo · Tijana Zrnic · Moritz Hardt -
2020 Poster: Making Non-Stochastic Control (Almost) as Easy as Stochastic »
Max Simchowitz -
2020 Poster: Learning the Linear Quadratic Regulator from Nonlinear Observations »
Zakaria Mhammedi · Dylan Foster · Max Simchowitz · Dipendra Misra · Wen Sun · Akshay Krishnamurthy · Alexander Rakhlin · John Langford -
2020 Poster: Constrained episodic reinforcement learning in concave-convex and knapsack settings »
Kianté Brantley · Miro Dudik · Thodoris Lykouris · Sobhan Miryoosefi · Max Simchowitz · Aleksandrs Slivkins · Wen Sun -
2019 Poster: Robust exploration in linear quadratic reinforcement learning »
Jack Umenberger · Mina Ferizbegovic · Thomas Schön · Håkan Hjalmarsson -
2019 Spotlight: Robust exploration in linear quadratic reinforcement learning »
Jack Umenberger · Mina Ferizbegovic · Thomas Schön · Håkan Hjalmarsson -
2019 Poster: Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs »
Max Simchowitz · Kevin Jamieson -
2018 Poster: Learning convex bounds for linear quadratic control policy synthesis »
Jack Umenberger · Thomas Schön -
2018 Spotlight: Learning convex bounds for linear quadratic control policy synthesis »
Jack Umenberger · Thomas Schön