Timezone: »
Most of the existing neural video compression methods adopt the predictive coding framework, which first generates the predicted frame and then encodes its residue with the current frame. However, as for compression ratio, predictive coding is only a sub-optimal solution as it uses simple subtraction operation to remove the redundancy across frames. In this paper, we propose a deep contextual video compression framework to enable a paradigm shift from predictive coding to conditional coding. In particular, we try to answer the following questions: how to define, use, and learn condition under a deep video compression framework. To tap the potential of conditional coding, we propose using feature domain context as condition. This enables us to leverage the high dimension context to carry rich information to both the encoder and the decoder, which helps reconstruct the high-frequency contents for higher video quality. Our framework is also extensible, in which the condition can be flexibly designed. Experiments show that our method can significantly outperform the previous state-of-the-art (SOTA) deep video compression methods. When compared with x265 using veryslow preset, we can achieve 26.0% bitrate saving for 1080P standard test videos.
Author Information
Jiahao Li (Microsoft Research Asia)
Bin Li (Microsoft)
Yan Lu (Microsoft Research Asia)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 5B-4 »
Yuezhi Yang · Zeyu Yang · Yong Lin · Yi.shi Xu · Linan Yue · Tao Yang · Weixin Chen · Qi Liu · Jiaqi Chen · Dongsheng Wang · Baoyuan Wu · Yuwang Wang · Hao Pan · Shengyu Zhu · Zhenwei Miao · Yan Lu · Lu Tan · Bo Chen · Yichao Du · Haoqian Wang · Wei Li · Yanqing An · Ruiying Lu · Peng Cui · Nanning Zheng · Li Wang · Zhibin Duan · Xiatian Zhu · Mingyuan Zhou · Enhong Chen · Li Zhang -
2022 Spotlight: Visual Concepts Tokenization »
Tao Yang · Yuwang Wang · Yan Lu · Nanning Zheng -
2022 Poster: Visual Concepts Tokenization »
Tao Yang · Yuwang Wang · Yan Lu · Nanning Zheng -
2022 Poster: Alignment-guided Temporal Attention for Video Action Recognition »
Yizhou Zhao · Zhenyang Li · Xun Guo · Yan Lu -
2022 Poster: Mask-based Latent Reconstruction for Reinforcement Learning »
Tao Yu · Zhizheng Zhang · Cuiling Lan · Yan Lu · Zhibo Chen